In protover.c, the `expand_protocol_list()` function expands a `smartlist_t` of
`proto_entry_t`s to their protocol name concatenated with each version number.
For example, given a `proto_entry_t` like so:
proto_entry_t *proto = tor_malloc(sizeof(proto_entry_t));
proto_range_t *range = tor_malloc_zero(sizeof(proto_range_t));
proto->name = tor_strdup("DoSaaaaaaaaaaaaaaaaaaaaaa[19KB]aaa");
proto->ranges = smartlist_new();
range->low = 1;
range->high = 65536;
smartlist_add(proto->ranges, range);
(Where `[19KB]` is roughly 19KB of `"a"` bytes.) This would expand in
`expand_protocol_list()` to a `smartlist_t` containing 65536 copies of the
string, e.g.:
"DoSaaaaaaaaaaaaaaaaaaaaaa[19KB]aaa=1"
"DoSaaaaaaaaaaaaaaaaaaaaaa[19KB]aaa=2"
[…]
"DoSaaaaaaaaaaaaaaaaaaaaaa[19KB]aaa=65535"
Thus constituting a potential resource exhaustion attack.
The Rust implementation is not subject to this attack, because it instead
expands the above string into a `HashMap<String, HashSet<u32>` prior to #24031,
and a `HashMap<UnvalidatedProtocol, ProtoSet>` after). Neither Rust version is
subject to this attack, because it only stores the `String` once per protocol.
(Although a related, but apparently of too minor impact to be usable, DoS bug
has been fixed in #24031. [0])
[0]: https://bugs.torproject.org/24031
* ADDS hard limit on protocol name lengths in protover.c and checks in
parse_single_entry() and expand_protocol_list().
* ADDS tests to ensure the bug is caught.
* FIXES#25517: https://bugs.torproject.org/25517
There's now no difference in these tests w.r.t. the C or Rust: both
fail miserably (well, Rust fails with nice descriptive errors, and C
gives you a traceback, because, well, C).
The DoS potential is slightly higher in C now due to some differences to the
Rust code, see the C_RUST_DIFFERS tags in src/rust/protover/tests/protover.rs.
Also, the comment about "failing at the splitting stage" in Rust wasn't true,
since when we split, we ignore empty chunks (e.g. "1--1" parses into
"(1,None),(None,1)" and "None" can't be parsed into an integer).
Finally, the comment about "Rust seems to experience an internal error" is only
true in debug mode, where u32s are bounds-checked at runtime. In release mode,
code expressing the equivalent of this test will error with
`Err(ProtoverError::Unparseable)` because 4294967295 is too large.
Previously, if "Link=1-5" was supported, and you asked protover_all_supported()
(or protover::all_supported() in Rust) if it supported "Link=3-999", the C
version would return "Link=3-999" and the Rust would return "Link=6-999". These
both behave the same now, i.e. both return "Link=6-999".
These were meant to demonstrate old behavior, or old rust behavior.
One of them _should_ work in Rust, but won't because of
implementation details. We'll fix that up later.
The C code and the rust code had different separate integer overflow
bugs here. That suggests that we're better off just forbidding this
pathological case.
Also, add tests for expected behavior on receiving a bad protocol
list in a consensus.
Fixes another part of 25249.
I've refactored these to be a separate function, to avoid tricky
merge conflicts.
Some of these are disabled with "XXXX" comments; they should get
fixed moving forward.
[This is a brute-force method that potentially uses way too much
RAM. Need to rethink this a little. Right now you can DOS an
authority by saying "Foo=1-4294967295".]