If we completed the handshake for the v2 link protocol but wound up
negotiating the wong protocol version, we'd become so confused about
what part of the handshake we were in that we'd promptly die with an
assertion.
This is a fix for CVE-2012-2250; it's a bugfix on 0.2.3.6-alpha.
All servers running that version or later should really upgrade.
Bug and fix from "some guy from France." I tweaked his code slightly
to make it log the IP of the offending node, and to forward-port it to
0.2.4.
If we completed the handshake for the v2 link protocol but wound up
negotiating the wong protocol version, we'd become so confused about
what part of the handshake we were in that we'd promptly die with an
assertion.
This is a fix for CVE-2012-2250; it's a bugfix on 0.2.3.6-alpha.
All servers running that version or later should really upgrade.
Bug and fix from "some guy from France." I tweaked his code slightly
to make it log the IP of the offending node.
The implementation we added has a tendency to crash with lists of 0 or
one element. That can happen if we get a consensus vote, v2
consensus, consensus, or geoip file with 0 or 1 element. There's a
DOS opportunity there that authorities could exploit against one
another, and which an evil v2 authority could exploit against anything
downloading v2 directory information..
This fix is minimalistic: It just adds a special-case for 0- and
1-element lists. For 0.2.4 (the current alpha series) we'll want a
better patch.
This is bug 7191; it's a fix on 0.2.0.10-alpha.
Clients now consider the ClientRejectInternalAddresses config option
when using a microdescriptor consensus stanza to decide whether
an exit relay would allow exiting to an internal address. Fixes
bug 7190; bugfix on 0.2.3.1-alpha.
Our implementation of parse_short_policy was screwed up: it would
ignore the last character of every short policy. Obviously, that's
broken.
This patch fixes the busted behavior, and adds a bunch of unit tests
to make sure the rest of that function is okay.
Fixes bug 7192; fix on 0.2.3.1-alpha.
Conflicts:
src/or/circuitbuild.c
There was a huge-looking conflict in circuitbuild.c, but the only
change that had been made to circuitbuild.c since I forked off the
split_circuitbuild branch was 17442560c4. So I took the
split_circuitbuild version of the conflicting part, and manually
re-applied the change from 17442560c44e8093f9a..
OpenSSL 1.0.0 added an implementation of TLS session tickets, a
"feature" that let session resumption occur without server-side state
by giving clients an encrypted "ticket" that the client could present
later to get the session going again with the same keys as before.
OpenSSL was giving the keys to decrypt these tickets the lifetime of
the SSL contexts, which would have been terrible for PFS if we had
long-lived SSL contexts. Fortunately, we don't. Still, it's pretty
bad. We should also drop these, since our use of the extension stands
out with our non-use of session cacheing.
Found by nextgens. Bugfix on all versions of Tor when built with
openssl 1.0.0 or later. Fixes bug 7139.
Failure to do so left us open to a remotely triggerable assertion
failure. Fixes CVE-2012-2249; bugfix on 0.2.3.6-alpha. Reported by
"some guy from France".
This patch is a forward-port to 0.2.4, to work with the new channel
logic.
Failure to do so left us open to a remotely triggerable assertion
failure. Fixes CVE-2012-2249; bugfix on 0.2.3.6-alpha. Reported by
"some guy from France".
We were calling channel_get_actual_remote_descr() before we used the
output of a previous channel_get_canonical_remote_descr(), thus
invalidating its output.
When we merged the channel code, we made the 'address' field of linked
directory connections created with begindir (and their associated edge
connections) contain an address:port string, when they should only
have contained the address part.
This patch also tweaks the interface to the get_descr method of
channels so that it takes a set of flags rather than a single flag.
In 4768c0efe3 (not in any released
version of Tor), we removed a little block of code that set the addr
field of an exit connection used in making a tunneled directory
request. Turns out that wasn't right.
My scripts missed it because it was in eventdns.c, which was in ext,
but it _was_ using one of our identifiers. That's probably because
eventdns.c has drifted a bit since we forked it.
I'm not going to fix the other reserved identifiers in eventdns.c,
since that would make it drift even more.
There are as many divergent implementations of sys/queue.h as there
are operating systems shipping it, it would seem. They have some code
in common, but have drifted apart, and have added other stuff named
differently. So I'm taking a relatively sane one, and hoping for the
best.
I'm taking OpenBSD's in particular because of the lack of external
dependencies, the presence of a CIRCLEQ (we could use one of those in
places), and the liberal licensing terms.
I'm naming the file tor_queue.h, since historically we've run into
trouble having headers with the same names as system headers (log.h,
for example.)
In C, we technically aren't supposed to define our own things that
start with an underscore.
This is a purely machine-generated commit. First, I ran this script
on all the headers in src/{common,or,test,tools/*}/*.h :
==============================
use strict;
my %macros = ();
my %skipped = ();
FILE: for my $fn (@ARGV) {
my $f = $fn;
if ($fn !~ /^\.\//) {
$f = "./$fn";
}
$skipped{$fn} = 0;
open(F, $fn);
while (<F>) {
if (/^#ifndef ([A-Za-z0-9_]+)/) {
$macros{$fn} = $1;
next FILE;
}
}
}
print "#!/usr/bin/perl -w -i -p\n\n";
for my $fn (@ARGV) {
if (! exists $macros{$fn}) {
print "# No macro known for $fn!\n" if (!$skipped{$fn});
next;
}
if ($macros{$fn} !~ /_H_?$/) {
print "# Weird macro for $fn...\n";
}
my $goodmacro = uc $fn;
$goodmacro =~ s#.*/##;
$goodmacro =~ s#[\/\-\.]#_#g;
print "s/(?<![A-Za-z0-9_])$macros{$fn}(?![A-Za-z0-9_])/TOR_${goodmacro}/g;\n"
}
==============================
It produced the following output, which I then re-ran on those same files:
==============================
s/(?<![A-Za-z0-9_])_TOR_ADDRESS_H(?![A-Za-z0-9_])/TOR_ADDRESS_H/g;
s/(?<![A-Za-z0-9_])_TOR_AES_H(?![A-Za-z0-9_])/TOR_AES_H/g;
s/(?<![A-Za-z0-9_])_TOR_COMPAT_H(?![A-Za-z0-9_])/TOR_COMPAT_H/g;
s/(?<![A-Za-z0-9_])_TOR_COMPAT_LIBEVENT_H(?![A-Za-z0-9_])/TOR_COMPAT_LIBEVENT_H/g;
s/(?<![A-Za-z0-9_])_TOR_CONTAINER_H(?![A-Za-z0-9_])/TOR_CONTAINER_H/g;
s/(?<![A-Za-z0-9_])_TOR_CRYPTO_H(?![A-Za-z0-9_])/TOR_CRYPTO_H/g;
s/(?<![A-Za-z0-9_])TOR_DI_OPS_H(?![A-Za-z0-9_])/TOR_DI_OPS_H/g;
s/(?<![A-Za-z0-9_])_TOR_MEMAREA_H(?![A-Za-z0-9_])/TOR_MEMAREA_H/g;
s/(?<![A-Za-z0-9_])_TOR_MEMPOOL_H(?![A-Za-z0-9_])/TOR_MEMPOOL_H/g;
s/(?<![A-Za-z0-9_])TOR_PROCMON_H(?![A-Za-z0-9_])/TOR_PROCMON_H/g;
s/(?<![A-Za-z0-9_])_TOR_TORGZIP_H(?![A-Za-z0-9_])/TOR_TORGZIP_H/g;
s/(?<![A-Za-z0-9_])_TOR_TORINT_H(?![A-Za-z0-9_])/TOR_TORINT_H/g;
s/(?<![A-Za-z0-9_])_TOR_LOG_H(?![A-Za-z0-9_])/TOR_TORLOG_H/g;
s/(?<![A-Za-z0-9_])_TOR_TORTLS_H(?![A-Za-z0-9_])/TOR_TORTLS_H/g;
s/(?<![A-Za-z0-9_])_TOR_UTIL_H(?![A-Za-z0-9_])/TOR_UTIL_H/g;
s/(?<![A-Za-z0-9_])_TOR_BUFFERS_H(?![A-Za-z0-9_])/TOR_BUFFERS_H/g;
s/(?<![A-Za-z0-9_])_TOR_CHANNEL_H(?![A-Za-z0-9_])/TOR_CHANNEL_H/g;
s/(?<![A-Za-z0-9_])_TOR_CHANNEL_TLS_H(?![A-Za-z0-9_])/TOR_CHANNELTLS_H/g;
s/(?<![A-Za-z0-9_])_TOR_CIRCUITBUILD_H(?![A-Za-z0-9_])/TOR_CIRCUITBUILD_H/g;
s/(?<![A-Za-z0-9_])_TOR_CIRCUITLIST_H(?![A-Za-z0-9_])/TOR_CIRCUITLIST_H/g;
s/(?<![A-Za-z0-9_])_TOR_CIRCUITMUX_EWMA_H(?![A-Za-z0-9_])/TOR_CIRCUITMUX_EWMA_H/g;
s/(?<![A-Za-z0-9_])_TOR_CIRCUITMUX_H(?![A-Za-z0-9_])/TOR_CIRCUITMUX_H/g;
s/(?<![A-Za-z0-9_])_TOR_CIRCUITUSE_H(?![A-Za-z0-9_])/TOR_CIRCUITUSE_H/g;
s/(?<![A-Za-z0-9_])_TOR_COMMAND_H(?![A-Za-z0-9_])/TOR_COMMAND_H/g;
s/(?<![A-Za-z0-9_])_TOR_CONFIG_H(?![A-Za-z0-9_])/TOR_CONFIG_H/g;
s/(?<![A-Za-z0-9_])TOR_CONFPARSE_H(?![A-Za-z0-9_])/TOR_CONFPARSE_H/g;
s/(?<![A-Za-z0-9_])_TOR_CONNECTION_EDGE_H(?![A-Za-z0-9_])/TOR_CONNECTION_EDGE_H/g;
s/(?<![A-Za-z0-9_])_TOR_CONNECTION_H(?![A-Za-z0-9_])/TOR_CONNECTION_H/g;
s/(?<![A-Za-z0-9_])_TOR_CONNECTION_OR_H(?![A-Za-z0-9_])/TOR_CONNECTION_OR_H/g;
s/(?<![A-Za-z0-9_])_TOR_CONTROL_H(?![A-Za-z0-9_])/TOR_CONTROL_H/g;
s/(?<![A-Za-z0-9_])_TOR_CPUWORKER_H(?![A-Za-z0-9_])/TOR_CPUWORKER_H/g;
s/(?<![A-Za-z0-9_])_TOR_DIRECTORY_H(?![A-Za-z0-9_])/TOR_DIRECTORY_H/g;
s/(?<![A-Za-z0-9_])_TOR_DIRSERV_H(?![A-Za-z0-9_])/TOR_DIRSERV_H/g;
s/(?<![A-Za-z0-9_])_TOR_DIRVOTE_H(?![A-Za-z0-9_])/TOR_DIRVOTE_H/g;
s/(?<![A-Za-z0-9_])_TOR_DNS_H(?![A-Za-z0-9_])/TOR_DNS_H/g;
s/(?<![A-Za-z0-9_])_TOR_DNSSERV_H(?![A-Za-z0-9_])/TOR_DNSSERV_H/g;
s/(?<![A-Za-z0-9_])TOR_EVENTDNS_TOR_H(?![A-Za-z0-9_])/TOR_EVENTDNS_TOR_H/g;
s/(?<![A-Za-z0-9_])_TOR_GEOIP_H(?![A-Za-z0-9_])/TOR_GEOIP_H/g;
s/(?<![A-Za-z0-9_])_TOR_HIBERNATE_H(?![A-Za-z0-9_])/TOR_HIBERNATE_H/g;
s/(?<![A-Za-z0-9_])_TOR_MAIN_H(?![A-Za-z0-9_])/TOR_MAIN_H/g;
s/(?<![A-Za-z0-9_])_TOR_MICRODESC_H(?![A-Za-z0-9_])/TOR_MICRODESC_H/g;
s/(?<![A-Za-z0-9_])_TOR_NETWORKSTATUS_H(?![A-Za-z0-9_])/TOR_NETWORKSTATUS_H/g;
s/(?<![A-Za-z0-9_])_TOR_NODELIST_H(?![A-Za-z0-9_])/TOR_NODELIST_H/g;
s/(?<![A-Za-z0-9_])_TOR_NTMAIN_H(?![A-Za-z0-9_])/TOR_NTMAIN_H/g;
s/(?<![A-Za-z0-9_])_TOR_ONION_H(?![A-Za-z0-9_])/TOR_ONION_H/g;
s/(?<![A-Za-z0-9_])_TOR_OR_H(?![A-Za-z0-9_])/TOR_OR_H/g;
s/(?<![A-Za-z0-9_])_TOR_POLICIES_H(?![A-Za-z0-9_])/TOR_POLICIES_H/g;
s/(?<![A-Za-z0-9_])_TOR_REASONS_H(?![A-Za-z0-9_])/TOR_REASONS_H/g;
s/(?<![A-Za-z0-9_])_TOR_RELAY_H(?![A-Za-z0-9_])/TOR_RELAY_H/g;
s/(?<![A-Za-z0-9_])_TOR_RENDCLIENT_H(?![A-Za-z0-9_])/TOR_RENDCLIENT_H/g;
s/(?<![A-Za-z0-9_])_TOR_RENDCOMMON_H(?![A-Za-z0-9_])/TOR_RENDCOMMON_H/g;
s/(?<![A-Za-z0-9_])_TOR_RENDMID_H(?![A-Za-z0-9_])/TOR_RENDMID_H/g;
s/(?<![A-Za-z0-9_])_TOR_RENDSERVICE_H(?![A-Za-z0-9_])/TOR_RENDSERVICE_H/g;
s/(?<![A-Za-z0-9_])_TOR_REPHIST_H(?![A-Za-z0-9_])/TOR_REPHIST_H/g;
s/(?<![A-Za-z0-9_])_TOR_REPLAYCACHE_H(?![A-Za-z0-9_])/TOR_REPLAYCACHE_H/g;
s/(?<![A-Za-z0-9_])_TOR_ROUTER_H(?![A-Za-z0-9_])/TOR_ROUTER_H/g;
s/(?<![A-Za-z0-9_])_TOR_ROUTERLIST_H(?![A-Za-z0-9_])/TOR_ROUTERLIST_H/g;
s/(?<![A-Za-z0-9_])_TOR_ROUTERPARSE_H(?![A-Za-z0-9_])/TOR_ROUTERPARSE_H/g;
s/(?<![A-Za-z0-9_])TOR_ROUTERSET_H(?![A-Za-z0-9_])/TOR_ROUTERSET_H/g;
s/(?<![A-Za-z0-9_])TOR_STATEFILE_H(?![A-Za-z0-9_])/TOR_STATEFILE_H/g;
s/(?<![A-Za-z0-9_])_TOR_STATUS_H(?![A-Za-z0-9_])/TOR_STATUS_H/g;
s/(?<![A-Za-z0-9_])TOR_TRANSPORTS_H(?![A-Za-z0-9_])/TOR_TRANSPORTS_H/g;
s/(?<![A-Za-z0-9_])_TOR_TEST_H(?![A-Za-z0-9_])/TOR_TEST_H/g;
s/(?<![A-Za-z0-9_])_TOR_FW_HELPER_H(?![A-Za-z0-9_])/TOR_TOR_FW_HELPER_H/g;
s/(?<![A-Za-z0-9_])_TOR_FW_HELPER_NATPMP_H(?![A-Za-z0-9_])/TOR_TOR_FW_HELPER_NATPMP_H/g;
s/(?<![A-Za-z0-9_])_TOR_FW_HELPER_UPNP_H(?![A-Za-z0-9_])/TOR_TOR_FW_HELPER_UPNP_H/g;
==============================
The rationale for treating these files differently is that we should
be checking upstream for changes as applicable, and merging changes
upstream as warranted.
Conflicts:
src/or/circuitbuild.c
The conflict was trivial, since no line of code actually changed in
both branches: There was a fmt_addr() that turned into fmt_addrport()
in bug7011, and a "if (!n_conn)" that turned into "if (!n_chan)" in
master.
This is mostly a conversion from this pattern:
log("... %s:%d ...", fmt_and_decorate_addr(&addr), port);
to this:
log("... %s ...", fmt_addrport(&addr, port));
The output is the same in all cases.
Apparently BridgeDB is already expecting transport lines to be formatted
thus; see https://trac.torproject.org/projects/tor/ticket/7011#comment:12 ff.
It may be that there are no extant IPv6 pluggable transport bridges yet,
so this didn't cause a problem.
state_transport_line_is_valid calls tor_addr_port_lookup, which expects
brackets around an IPv6 address. Without this, cached transport
addresses can't be parsed later:
[warn] state: Could not parse addrport.
[warn] state: State file seems to be broken.
See #7011.