This patch makes Tor log state transitions within the PT layer at the
info log-level. This should make it easier to figure out if Tor ends up
in a strange state.
See: tpo/core/tor#33669
This started as a response to ticket #40792 where Coverity is
complaining about a potential year 2038 bug where we cast time_t from
approx_time() to uint32_t for use in token_bucket_ctr.
There was a larger can of worms though, since token_bucket really
doesn't want to be using wallclock time here. I audited the call sites
for approx_time() and changed any that used a 32-bit cast or made
inappropriate use of wallclock time. Things like certificate lifetime,
consensus intervals, etc. need wallclock time. Measurements of rates
over time, however, are better served with a monotonic timer that does
not try and sync with wallclock ever.
Looking closer at token_bucket, its design is a bit odd because it was
initially intended for use with tick units but later forked into
token_bucket_rw which uses ticks to count bytes per second, and
token_bucket_ctr which uses seconds to count slower events. The rates
represented by either token bucket can't be lower than 1 per second, so
the slower timer in 'ctr' is necessary to represent the slower rates of
things like connections or introduction packets or rendezvous attempts.
I considered modifying token_bucket to use 64-bit timestamps overall
instead of 32-bit, but that seemed like an unnecessarily invasive change
that would grant some peace of mind but probably not help much. I was
more interested in removing the dependency on wallclock time. The
token_bucket_rw timer already uses monotonic time. This patch converts
token_bucket_ctr to use monotonic time as well. It introduces a new
monotime_coarse_absolute_sec(), which is currently the same as nsec
divided by a billion but could be optimized easily if we ever need to.
This patch also might fix a rollover bug.. I haven't tested this
extensively but I don't think the previous version of the rollover code
on either token bucket was correct, and I would expect it to get stuck
after the first rollover.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This adds a bit more to hs_descriptor/test_decode_descriptor, mostly
testing pow-params and triggering the tor_assert() in issue #40793.
There was no mechanism for adding arbitrary test strings to the
encrypted portion of the desc without duplicating encode logic. One
option might be to publicize get_inner_encrypted_layer_plaintext enough
to add a mock implementation. In this patch I opt for what seems like
the simplest solution, at the cost of a small amount of #ifdef noise.
The unpacked descriptor grows a new test-only member that's used for
dropping arbitrary data in at encode time.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
The descriptor validation table had an out of date minimum length
for pow-params (3) whereas the spec and the current code expect at
least 4 parameters. This was an opportunity for a malicious service
to cause an assert failure in clients which attempted to parse its
descriptor.
Addresses issue #40793
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This is a protocol breaking change that implements nickm's
changes to prop 327 to add an algorithm personalization string
and blinded HS id to the EquiX challenge string for our onion
service client puzzle.
This corresponds with the spec changes in torspec!130,
and it fixes a proposed vulnerability documented in
ticket tor#40789.
Clients and services prior to this patch will no longer
be compatible with the proposed "v1" proof-of-work protocol.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This lets controller apps see the outgoing PoW effort on client
circuits, and the validated effort received on an incoming service
circuit.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This error path with the "PoW cpuworker returned with no solution.
Will retry soon." message was usually lying. It's concerning
now because we expect to always find a solution no matter how
long it takes, rather than re-enter the solver repeatedly, so any
exit without a solution is a sign of a problem.
In fact when this error path gets hit, we are usually missing a
circuit instead because the request is quite old and the circuits
have been destroyed. This is not an emergency, it's just a sign
of client-side overload.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
i think we're done with these?
and swap in a nonfatal assert to replace one of the comments.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This dequeue path has been through a few revisions by now, first
limiting us to a fixed number per event loop callback, then an
additional limit based on a token bucket, then the current version
which has only the token bucket.
The thinking behing processing multiple requests per callback was to
optimize our usage of libevent, but in effect this creates a
prioritization problem. I think even a small fixed limit would be less
reliable than just backing out this optimization and always allowing
other callbacks to interrupt us in-between dequeues.
With this patch I'm seeing much smoother queueing behavior when I add
artificial delays to the main thread in testing.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This centralizes the logic for deciding on these magic thresholds,
and tries to reduce them to just two: a min and max. The min should be a
"nearly empty" threshold, indicating that the queue only contains work
we expect to be able to complete very soon. The max level triggers a
bulk culling process that reduces the queue to half that amount.
This patch calculates both thresholds based on the torrc pqueue rate
settings if they're present, and uses generic defaults if the user asked
for an unlimited dequeue rate in torrc.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
The worker job queue for hs_pow needs what's effectively a weak pointer
to two circuits, but there's not a generic mechanism for this in c-tor.
The previous approach of circuit_get_by_global_id() is straightforward
but not efficient. These global IDs are normally only used by the
control port protocol. To reduce the number of O(N) lookups we have over
the whole circuit list, we can use hs_circuitmap to look up the rend
circuit by its auth cookie.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This is trying to be an AIMD event-driven algorithm, but we ended up with
two different add paths with diverging behavior. This fix makes the AIMD
events more explicit, and it fixes an earlier behavior where the effort
could be decreased (by the add/recalculate branch) even when the pqueue
was not emptying at all. With this patch we shouldn't drop down to an
effort of zero as long as even low-effort attacks are flooding the
pqueue.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
The goal of this patch is to add an additional mechanism for adjusting
PoW effort upwards, where clients rather than services can choose to
solve their puzzles at a higher effort than what was suggested in the
descriptor.
I wanted to use hs_cache's existing unreachability stats to drive this
effort bump, but this revealed some cases where a circuit (intro or
rend) closed early on can end up in hs_cache with an all zero intro
point key, where nobody will find it. This moves intro_auth_pk
initialization earlier in a couple places and adds nonfatal asserts to
catch the problem if it shows up elsewhere.
The actual effort adjustment method I chose is to multiply the suggested
effort by (1 + unresponsive_count), then ensure the result is at least
1. If a service has suggested effort of 0 but we fail to connect,
retries will all use an effort of 1. If the suggestion was 50, we'll try
50, 100, 150, 200, etc. This is bounded both by our client effort limit
and by the limit on unresponsive_count (currently 5).
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
Asan catches this pretty readily when ending a service gracefully while
a DoS is in progress and the queue is full of items that haven't yet
timed out.
The module boundaries in hs_circuit are quite fuzzy here, but I'm trying
to follow the vibe of the existing hs_pow code.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
500 was quite low, but this limit was helpful when the suggested-effort
estimation algorithm was likely to give us large abrupt increases. Now
that this should be fixed, let's allow spending a bit more time on the
client puzzles if it's actually necessary.
Solving a puzzle with effort=10000 usually completes within a minute
on my old x86_64 machine. We may want to fine tune this further, and it
should probably be made into a config option.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
I don't think the concept of "minimum effort" is really useful to us,
so this patch removes it entirely and consequentially changes the way
that "total" effort is calculated so that we don't rely on any minimum
and we instead ramp up effort no faster than necessary.
If at least some portion of the attack is conducted by clients that
avoid PoW or provide incorrect solutions, those (potentially very
cheap) attacks will end up keeping the pqueue full. Prior to this patch,
that would cause suggested efforts to be unnecessarily high, because
rounding these very cheap requests up to even a minimum of 1 will
overestimate how much actual attack effort is being spent.
The result is that this patch is a simplification and it also allows a
slower start, where PoW effort jumps up either by a single unit or by an
amount calculated from actual effort in the queue.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This patch is intended to clarify the points at which we convert
between the internal representation of an equix_solution and a portable
but opaque byte array representation.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This leak was showing up in address sanitizer runs of test_hs_pow,
but it will also happen during normal operation as seeds are rotated.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This is more consistent with the specification, and it's much
less confusing with endianness. This resolves the underlying
cause of the earlier byte-swap. This patch itself does not
change the wire protocol at all, it's just tidying up the
types we use at the trunnel layer.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
We were using a native uint128_t to represent the hs_pow nonce,
but as the comments note it's more portable and more flexible to
use a byte array. Indeed the uint128_t was a problem for 32-bit
platforms. This swaps in a new implementation that uses multiple
machine words to implement the nonce incrementation.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
In proposal 327, "POW_SEED is the first 4 bytes of the seed used".
The proposal doesn't specifically mention the data type of this field,
and the code in hs_pow so far treats it as an integer but semantically
it's more like the first four bytes of an already-encoded little endian
blob. This leads to a byte swap, since the type confusion takes place
in a little-endian subsystem but the wire encoding of seed_head uses
tor's default of big endian.
This patch does not address the underlying type confusion, it's a
minimal change that only swaps the byte order and updates unit tests
accordingly. Further changes will clean up the data types.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
Much faster per-hash, affects both verify and solve.
Only implemented on x86_64 and aarch64, other platforms
always use the interpreted version of hashx.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This forgoes another external library dependency, and instead
introduces a compatibility header so that interested parties
(who already depend on equix, like hs_pow and unit tests) can
use the implementation of blake2b included in hashx.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
I'm planning on swapping blake2b implementations, and this test
is intended to prevent regressions. Right now blake2b is only used by
hs_pow.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This adds a new "pow" module for the user-visible proof
of work support in ./configure, and this disables
src/feature/hs/hs_pow at compile-time.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This was apparently misinterpreting "zero solutions" as an error
instead of just moving on to the next nonce. Additionally, equix
could have been returning up to 8 solutions and we would only
give one of those a chance to succeed.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
We may want to choose something larger eventually, but 20 seemed
much too large. Very low nonzero efforts are still useful against
a script kiddie level DoS attack.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
This adds a token bucket ratelimiter on the dequeue side
of hs_pow's priority queue. It adds config options and docs
for those options. (HiddenServicePoWQueueRate/Burst)
I'm testing this as a way to limit the overhead of circuit
creation when we're experiencing a flood of rendezvous requests.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
Without this check, we never actually refetch the hs descriptor
when PoW parameters expire, because can_client_refetch_desc
deems the descriptor to be still good.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
Adds two new metrics for hs_pow, and an internal parameter within
hs_metrics for implementing gauge parameters that reset before
every update.
Signed-off-by: Micah Elizabeth Scott <beth@torproject.org>
We mark the intro circuit with a new flag saying that the pow is
in the cpuworker queue. When the cpuworker comes back, it either
has a solution, in which case we proceed with sending the intro1
cell, or it has no solution, in which case we unmark the intro
circuit and let the whole process restart on the next iteration of
connection_ap_handshake_attach_circuit().
into two parts:
* a "consider whether to send an intro2 cell" part (now called
consider_sending_introduce1()), and
* an "actually send it" (now called send_introduce1()).
prepares the way for client-side pow cpuworkers
also happens to resolve bug https://bugs.torproject.org/tpo/core/tor/40617
(which went into 0.4.7.4-alpha) because now we survive initing the
cpuworker subsystem when we're not a relay.
First (both client and service), make descriptor parsing not fail when
suggested_effort is 0.
Second (client side), if we get a descriptor with a pow_params section
but with suggested_effort of 0, treat it as not requiring a pow.
Third (service side), when deciding whether the suggested effort has
changed, don't treat "previous suggested effort 0, new suggested effort 0"
as a change.
An alternative design to resolve 'first' and 'second' above would be
to omit the pow_params from the descriptor when suggested_effort is 0,
so clients never see the pow_params so they don't compute a pow. But
I decided to include a pow_params with an explicit suggested_effort
of 0, since this way the client knows the seed etc so they can solve
a higher-effort pow if they want. The tradeoff is that the descriptor
reveals whether HiddenServicePoWDefensesEnabled is set to 1 for this onion
service, even if the AIMD calculation is currently requiring effort 0.
our pqueue implementation does bizarre unspecified things with
ordering of elements that are equal. it certainly doesn't do any
sort of "first in first out" property that i was expecting.
now make it explicit by saying that "equal-effort, added-earlier" is
higher priority.
specifically, if we have 16 in-flight rend circs, and the next
one at the top of the pqueue is lower than our suggested effort,
then don't launch it yet.
this way we always launch adequate-effort requests immediately, and
we always handle *some* low-effort requests, but we are ready at any
moment to handle a few new adequate-effort requests.
this change makes us reach the callback *after* each mainloop
run, rather than as the next event to run immediately after
activation.
with the old behavior, we were starving everything else to drain the
pqueue entirely, each time we got a new intro2 cell.
now we at least will get to other activities as well.
now we let ourselves queue up to twice as many as we expect, and when
we get to the limit we make a new pqueue and move over the first n
elements that we like most.
(the old approach, of calling SMARTLIST_DEL_CURRENT_KEEPORDER() on
elements in a pqueue, will destroy its heapify property.)
we also discard elements that are too old, either during the trimming
process or if they come up as the next request to respond to.
lastly, fix a fencepost error on how many rend reqs we would handle
per iteration.
If PoW are enabled, use a priority queue by effort for the rendezvous
requests hooked into the mainloop.
Signed-off-by: David Goulet <dgoulet@torproject.org>
When parsing an INTRODUCE2 cell, we extract data in order to launch the
rendezvous circuit. This commit creates a data structure just for that
data so it can be used by future commits for prop327 in order to copy
that data over a priority queue instead of the whole intro data data
structure which contains pointers that could dissapear.
Signed-off-by: David Goulet <dgoulet@torproject.org>
At this commit, the tor main loop solves it. We might consider moving
this to the CPU pool at some point.
Signed-off-by: David Goulet <dgoulet@torproject.org>
This adds utility functions to help stream block decisions, as well as cpath
layer_hint checks for stream cell acceptance, and syncing stream lists
for conflux circuits.
These functions are then called throughout the codebase to properly manage
conflux streams.
This adds 2 histogram metrics for hidden services:
* `tor_hs_rend_circ_build_time` - the rendezvous circuit build time in milliseconds
* `tor_hs_intro_circ_build_time` - the introduction circuit build time in milliseconds
The text representation representation of the new metrics looks like this:
```
# HELP tor_hs_rend_circ_build_time The rendezvous circuit build time in milliseconds
# TYPE tor_hs_rend_circ_build_time histogram
tor_hs_rend_circ_build_time_bucket{onion="<elided>",le="1000.00"} 2
tor_hs_rend_circ_build_time_bucket{onion="<elided>",le="5000.00"} 10
tor_hs_rend_circ_build_time_bucket{onion="<elided>",le="10000.00"} 10
tor_hs_rend_circ_build_time_bucket{onion="<elided>",le="30000.00"} 10
tor_hs_rend_circ_build_time_bucket{onion="<elided>",le="60000.00"} 10
tor_hs_rend_circ_build_time_bucket{onion="<elided>",le="+Inf"} 10
tor_hs_rend_circ_build_time_sum{onion="<elided>"} 10824
tor_hs_rend_circ_build_time_count{onion="<elided>"} 10
# HELP tor_hs_intro_circ_build_time The introduction circuit build time in milliseconds
# TYPE tor_hs_intro_circ_build_time histogram
tor_hs_intro_circ_build_time_bucket{onion="<elided>",le="1000.00"} 0
tor_hs_intro_circ_build_time_bucket{onion="<elided>",le="5000.00"} 6
tor_hs_intro_circ_build_time_bucket{onion="<elided>",le="10000.00"} 6
tor_hs_intro_circ_build_time_bucket{onion="<elided>",le="30000.00"} 6
tor_hs_intro_circ_build_time_bucket{onion="<elided>",le="60000.00"} 6
tor_hs_intro_circ_build_time_bucket{onion="<elided>",le="+Inf"} 6
tor_hs_intro_circ_build_time_sum{onion="<elided>"} 9843
tor_hs_intro_circ_build_time_count{onion="<elided>"} 6
```
Signed-off-by: Gabriela Moldovan <gabi@torproject.org>
This adds a `reason` label to the `hs_intro_rejected_intro_req_count` and
`hs_rdv_error_count` metrics introduced in #40755.
Metric look up and intialization is now more a bit more involved. This may be
fine for now, but it will become unwieldy if/when we add more labels (and as
such will need to be refactored).
Also, in the future, we may want to introduce finer grained `reason` labels.
For example, the `invalid_introduce2` label actually covers multiple types of
errors that can happen during the processing of an INTRODUCE2 cell (such as
cell parse errors, replays, decryption errors).
Signed-off-by: Gabriela Moldovan <gabi@torproject.org>
This introduces a couple of new service side metrics:
* `hs_intro_rejected_intro_req_count`, which counts the number of introduction
requests rejected by the hidden service
* `hs_rdv_error_count`, which counts the number of rendezvous errors as seen by
the hidden service (this number includes the number of circuit establishment
failures, failed retries, end-to-end circuit setup failures)
Closes#40755. This partially addresses #40717.
Signed-off-by: Gabriela Moldovan <gabi@torproject.org>
Directory authorities now include their AuthDirMaxServersPerAddr
config option in the consensus parameter section of their vote. Now
external tools can better predict how they will behave.
In particular, the value should make its way to the
https://consensus-health.torproject.org/#consensusparams page.
Once enough dir auths vote this param, they should also compute a
consensus value for it in the consensus document. Nothing uses this
consensus value yet, but we could imagine having dir auths consult it
in the future.
Implements ticket 40753.
This updates the docs to stop suggesting `pk` can be NULL, as that doesn't seem
to be the case anymore (`tor_assert(pk)`).
Signed-off-by: Gabriela Moldovan <gabi@torproject.org>