When picking bridges (or other nodes without a consensus entry (and
thus no bandwidth weights)) we shouldn't just trust the node's
descriptor. So far we believed anything between 0 and 10MB/s, where 0
would mean that a node doesn't get any use from use unless it is our
only one, and 10MB/s would be a quite siginficant weight. To make this
situation better, we now believe weights in the range from 20kB/s to
100kB/s. This should allow new bridges to get use more quickly, and
means that it will be harder for bridges to see almost all our traffic.
In the first 100 circuits, our timeout_ms and close_ms
are the same. So we shouldn't transition circuits to purpose
CIRCUIT_PURPOSE_C_MEASURE_TIMEOUT, since they will just timeout again
next time we check.
We really should ignore any timeouts that have *no* network activity for their
entire measured lifetime, now that we have the 95th percentile measurement
changes. Usually this is up to a minute, even on fast connections.
If we really want all this complexity for these stages here, we need to handle
it better for people with large timeouts. It should probably go away, though.
Rechecking the timeout condition was foolish, because it is checked on the
same codepath. It was also wrong, because we didn't round.
Also, the liveness check itself should be <, and not <=, because we only have
1 second resolution.
Specifically, a circ attempt that we'd launched while the network was
down could timeout after we've marked our entrynodes up, marking them
back down again. The fix is to annotate as bad the OR conns that were
around before we did the retry, so if a circuit that's attached to them
times out we don't do anything about it.
If you want to try to build Tor with a recent MSVC, you are better
off starting from scratch than trying to use the project files that
we used to build 2006 versions of Tor using 2006 versions of MSVC.