I introduced this bug when I moved signing_key_cert into
signed_descriptor_t. Bug not in any released Tor. Fixes bug 19175, and
another case of 19128.
Just like signed_descriptor_from_routerinfo(), routerlist_reparse_old()
copies the fields from one signed_descriptor_t to another, and then
clears the fields from the original that would have been double-freed by
freeing the original. But when I fixed the s_d_f_r() bug [#19128] in
50cbf22099, I missed the fact that the code was duplicated in
r_p_o().
Duplicated code strikes again!
For a longer-term solution here, I am not only adding the missing fix to
r_p_o(): I am also extracting the duplicated code into a new function.
Many thanks to toralf for patiently sending me stack traces until
one made sense.
If OpenSSL fails to generate an RSA key, do not retain a dangling
pointer to the previous (uninitialized) key value. The impact here
should be limited to a difficult-to-trigger crash, if OpenSSL is
running an engine that makes key generation failures possible, or if
OpenSSL runs out of memory. Fixes bug 19152; bugfix on
0.2.1.10-alpha. Found by Yuan Jochen Kang, Suman Jana, and Baishakhi
Ray.
This is potentially scary stuff, so let me walk through my analysis.
I think this is a bug, and a backport candidate, but not remotely
triggerable in any useful way.
Observation 1a:
Looking over the OpenSSL code here, the only way we can really fail in
the non-engine case is if malloc() fails. But if malloc() is failing,
then tor_malloc() calls should be tor_asserting -- the only way that an
attacker could do an exploit here would be to figure out some way to
make malloc() fail when openssl does it, but work whenever Tor does it.
(Also ordinary malloc() doesn't fail on platforms like Linux that
overcommit.)
Observation 1b:
Although engines are _allowed_ to fail in extra ways, I can't find much
evidence online that they actually _do_ fail in practice. More evidence
would be nice, though.
Observation 2:
We don't call crypto_pk_generate*() all that often, and we don't do it
in response to external inputs. The only way to get it to happen
remotely would be by causing a hidden service to build new introduction
points.
Observation 3a:
So, let's assume that both of the above observations are wrong, and the
attacker can make us generate a crypto_pk_env_t with a dangling pointer
in its 'key' field, and not immediately crash.
This dangling pointer will point to what used to be an RSA structure,
with the fields all set to NULL. Actually using this RSA structure,
before the memory is reused for anything else, will cause a crash.
In nearly every function where we call crypto_pk_generate*(), we quickly
use the RSA key pointer -- either to sign something, or to encode the
key, or to free the key. The only exception is when we generate an
intro key in rend_consider_services_intro_points(). In that case, we
don't actually use the key until the intro circuit is opened -- at which
point we encode it, and use it to sign an introduction request.
So in order to exploit this bug to do anything besides crash Tor, the
attacker needs to make sure that by the time the introduction circuit
completes, either:
* the e, d, and n BNs look valid, and at least one of the other BNs is
still NULL.
OR
* all 8 of the BNs must look valid.
To look like a valid BN, *they* all need to have their 'top' index plus
their 'd' pointer indicate an addressable region in memory.
So actually getting useful data of of this, rather than a crash, is
going to be pretty damn hard. You'd have to force an introduction point
to be created (or wait for one to be created), and force that particular
crypto_pk_generate*() to fail, and then arrange for the memory that the
RSA points to to in turn point to 3...8 valid BNs, all by the time the
introduction circuit completes.
Naturally, the signature won't check as valid [*], so the intro point
will reject the ESTABLISH_INTRO cell. So you need to _be_ the
introduction point, or you don't actually see this information.
[*] Okay, so if you could somehow make the 'rsa' pointer point to a
different valid RSA key, then you'd get a valid signature of an
ESTABLISH_INTRO cell using a key that was supposed to be used for
something else ... but nothing else looks like that, so you can't use
that signature elsewhere.
Observation 3b:
Your best bet as an attacker would be to make the dangling RSA pointer
actually contain a fake method, with a fake RSA_private_encrypt
function that actually pointed to code you wanted to execute. You'd
still need to transit 3 or 4 pointers deep though in order to make that
work.
Conclusion:
By 1, you probably can't trigger this without Tor crashing from OOM.
By 2, you probably can't trigger this reliably.
By 3, even if I'm wrong about 1 and 2, you have to jump through a pretty
big array of hoops in order to get any kind of data leak or code
execution.
So I'm calling it a bug, but not a security hole. Still worth
patching.
Fortunately, the arithmetic cannot actually overflow, so long as we
*always* check for the size of potentially hostile input before
copying it. I think we do, though. We do check each line against
MAX_LINE_LENGTH, and each object name or object against
MAX_UNPARSED_OBJECT_SIZE, both of which are 128k. So to get this
overflow, we need to have our memarea allocated way way too high up
in RAM, which most allocators won't actually do.
Bugfix on 0.2.1.1-alpha, where memarea was introduced.
Found by Guido Vranken.
Previously, if the header was present, we'd proceed even if the
function wasn't there.
Easy fix for bug 19161. A better fix would involve trying harder to
find libscrypt_scrypt.
AddressSanitizer's (ASAN) SIGSEGV handler overrides the backtrace
handler and prevents it from printing its backtrace. The output of ASAN
is different from what 'bt_test.py' expects and causes backtrace test
failures.
The 'allow_user_segv_handler' option allows applications to set their
own SIGSEGV handler but is not supported by older GCC versions. These
older GCC versions do support the 'handle_segv' which prevents ASAN from
setting its SIGSEGV handler.
Now that the field exists in signed_descriptor_t, we need to make
sure we free it when we free a signed_descriptor_t, and we need to
make sure that we don't free it when we convert a routerinfo_t to a
signed_descriptor_t.
But not in any released Tor. I found this while working on #19128.
One problem: I don't see how this could cause 19128.
We use a pretty specific pair of autoconf tests here to make sure
that we only add this code when:
a) a 64-bit signed multiply fails to link,
AND
b) the same 64-bit signed multiply DOES link correctly when
__mulodi4 is defined.
Closes ticket 19079.
We need to define this function when compiling with clang -m32 -ftrapv,
since otherwise we get link errors, since apparently some versions
of libclang_rt.builtins don't define a version of it that works? Or
clang doesn't know to look for it?
This definition is taken from the LLVM source at
https://llvm.org/svn/llvm-project/compiler-rt/trunk/lib/builtins/mulodi4.c
I've also included the license (dual BSD-ish/MIT-ish).
With the fix for #17150, I added a duplicate certificate here. Here
I remove the original location in 0.2.8. (I wouldn't want to do
that in 027, due to the amount of authority-voting-related code
drift.)
Closes 19073.
This API change makes it so that routerinfo_incompatible...() no
longer takes a routerinfo_t, so that it's obvious that it should
only look at fields from the signed_descriptor_t.
This change should prevent a recurrence of #17150.
We need this field to be in signed_descriptor_t so that
routerinfo_incompatible_with_extrainfo can work correctly (#17150).
But I don't want to move it completely in this patch, since a great
deal of the code that messes with it has been in flux since 0.2.7,
when this ticket was opened. I should open another ticket about
removing the field from routerinfo_t and extrainfo_t later on.
This patch fixes no actual behavior.
The routerinfo we pass to routerinfo_incompatible_with_extrainfo is
the latest routerinfo for the relay. The signed_descriptor_t, on
the other hand, is the signed_descriptor_t that corresponds to the
extrainfo. That means we should be checking the digest256 match
with that signed_descriptor_t, not with the routerinfo.
Fixes bug 17150 (and 19017); bugfix on 0.2.7.2-alpha.
When parsing detached signature, we make sure that we use the length of the
digest algorithm instead of an hardcoded DIGEST256_LEN in order to avoid
comparing bytes out of bound with a smaller digest length such as SHA1.
Fixes#19066
Signed-off-by: David Goulet <dgoulet@torproject.org>
We know there are overflows in curve25519-donna-c32, so we'll have
to have that one be fwrapv.
Only apply the asan, ubsan, and trapv options to the code that does
not need to run in constant time. Those options introduce branches
to the code they instrument.
(These introduced branches should never actually be taken, so it
might _still_ be constant time after all, but branch predictors are
complicated enough that I'm not really confident here. Let's aim for
safety.)
Closes 17983.
Make directory authorities write the v3-status-votes file out
to disk earlier in the consensus process, so we have the votes
even if we abort the consensus process later on.
Resolves ticket 19036.
The goal here is to provide a way to decouple pieces of the code
that want to learn "when something happens" from those that realize
that it has happened.
The implementation here consists of a generic backend, plus a set of
macros to define and implement a set of type-safe frontends.
In dirserv_compute_performance_thresholds, we allocate arrays based
on the length of 'routers', a list of routerinfo_t, but loop over
the nodelist. The 'routers' list may be shorter when relays were
filtered by routers_make_ed_keys_unique, leading to an out-of-bounds
write on directory authorities.
This bug was originally introduced in 26e89742, but it doesn't look
possible to trigger until routers_make_ed_keys_unique was introduced
in 13a31e72.
Fixes bug 19032; bugfix on tor 0.2.8.2-alpha.
This was one of our longest functions, at 600 lines. It makes a nice
table-driven URL-based function instead.
The code is a bit ugly, it leave the indentation as it is in hopes of
making pending directory.c changes easier to merge. Later we can
clean up the indentation.
Also, remove unused mallinfo export code from directory.c
Closes ticket 16698
Previously, we were using the generic schedule for some downloads,
and the consensus schedule for others.
Resolves ticket 18816; fix on fddb814fe in 0.2.4.13-alpha.
We used to be locked in to the "tap" handshake length, and now we can
handle better handshakes like "ntor".
Resolves ticket 18998.
I checked that relay_send_command_from_edge() behaves fine when you
hand it a payload with length 0. Clients behave fine too, since current
clients remain strict about the required length in the rendezvous2 cells.
(Clients will want to become less strict once they have an alternate
format that they're willing to receive.)
we should avoid launching a consensus fetch if we don't want one,
but if we do end up with an extra one, we should let the other checks
take care of it.
We'll back off from the request in connection_ap_handshake_attach_circuit,
or cancel it in connection_dir_close_consensus_fetches, and those are the
only places we need to check.
Tor stores client authorization cookies in two slightly different forms.
The service's client_keys file has the standard base64-encoded cookie,
including two chars of padding. The hostname file and the client remove
the two padding chars, and store an auth type flag in the unused bits.
The distinction makes no sense. Refactor all decoding to use the same
function, which will accept either form, and use a helper function for
encoding the truncated format.