Split crypto tests into a separate module.

This commit is contained in:
Nick Mathewson 2009-09-22 13:06:47 -04:00
parent 410f31e576
commit cea1225199
4 changed files with 783 additions and 757 deletions

View File

@ -12,7 +12,7 @@ AM_CFLAGS = -I../or
# This seems to matter nowhere but on windows, but I assure you that it
# matters a lot there, and is quite hard to debug if you forget to do it.
test_SOURCES = test_data.c test.c tinytest.c
test_SOURCES = test_data.c test.c test_crypto.c tinytest.c
test_LDFLAGS = @TOR_LDFLAGS_zlib@ @TOR_LDFLAGS_openssl@ \
@TOR_LDFLAGS_libevent@

View File

@ -31,7 +31,6 @@ const char tor_git_revision[] = "";
#define BUFFERS_PRIVATE
#define CONFIG_PRIVATE
#define CONTROL_PRIVATE
#define CRYPTO_PRIVATE
#define DIRSERV_PRIVATE
#define DIRVOTE_PRIVATE
#define GEOIP_PRIVATE
@ -94,7 +93,7 @@ setup_directory(void)
}
/** Return a filename relative to our testing temporary directory */
static const char *
const char *
get_fname(const char *name)
{
static char buf[1024];
@ -134,7 +133,7 @@ static crypto_pk_env_t *pregen_keys[5] = {NULL, NULL, NULL, NULL, NULL};
* the key cache optimization, we might reuse keys: we only guarantee that
* keys made with distinct values for <b>idx</b> are different. The value of
* <b>idx</b> must be at least 0, and less than N_PREGEN_KEYS. */
static crypto_pk_env_t *
crypto_pk_env_t *
pk_generate(int idx)
{
#ifdef CACHE_GENERATED_KEYS
@ -409,564 +408,6 @@ test_buffers(void)
buf_free(buf2);
}
/** Run unit tests for Diffie-Hellman functionality. */
static void
test_crypto_dh(void)
{
crypto_dh_env_t *dh1 = crypto_dh_new();
crypto_dh_env_t *dh2 = crypto_dh_new();
char p1[DH_BYTES];
char p2[DH_BYTES];
char s1[DH_BYTES];
char s2[DH_BYTES];
ssize_t s1len, s2len;
test_eq(crypto_dh_get_bytes(dh1), DH_BYTES);
test_eq(crypto_dh_get_bytes(dh2), DH_BYTES);
memset(p1, 0, DH_BYTES);
memset(p2, 0, DH_BYTES);
test_memeq(p1, p2, DH_BYTES);
test_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
test_memneq(p1, p2, DH_BYTES);
test_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
test_memneq(p1, p2, DH_BYTES);
memset(s1, 0, DH_BYTES);
memset(s2, 0xFF, DH_BYTES);
s1len = crypto_dh_compute_secret(dh1, p2, DH_BYTES, s1, 50);
s2len = crypto_dh_compute_secret(dh2, p1, DH_BYTES, s2, 50);
test_assert(s1len > 0);
test_eq(s1len, s2len);
test_memeq(s1, s2, s1len);
{
/* XXXX Now fabricate some bad values and make sure they get caught,
* Check 0, 1, N-1, >= N, etc.
*/
}
done:
crypto_dh_free(dh1);
crypto_dh_free(dh2);
}
/** Run unit tests for our random number generation function and its wrappers.
*/
static void
test_crypto_rng(void)
{
int i, j, allok;
char data1[100], data2[100];
/* Try out RNG. */
test_assert(! crypto_seed_rng(0));
crypto_rand(data1, 100);
crypto_rand(data2, 100);
test_memneq(data1,data2,100);
allok = 1;
for (i = 0; i < 100; ++i) {
uint64_t big;
char *host;
j = crypto_rand_int(100);
if (i < 0 || i >= 100)
allok = 0;
big = crypto_rand_uint64(U64_LITERAL(1)<<40);
if (big >= (U64_LITERAL(1)<<40))
allok = 0;
big = crypto_rand_uint64(U64_LITERAL(5));
if (big >= 5)
allok = 0;
host = crypto_random_hostname(3,8,"www.",".onion");
if (strcmpstart(host,"www.") ||
strcmpend(host,".onion") ||
strlen(host) < 13 ||
strlen(host) > 18)
allok = 0;
tor_free(host);
}
test_assert(allok);
done:
;
}
/** Run unit tests for our AES functionality */
static void
test_crypto_aes(void)
{
char *data1 = NULL, *data2 = NULL, *data3 = NULL;
crypto_cipher_env_t *env1 = NULL, *env2 = NULL;
int i, j;
data1 = tor_malloc(1024);
data2 = tor_malloc(1024);
data3 = tor_malloc(1024);
/* Now, test encryption and decryption with stream cipher. */
data1[0]='\0';
for (i = 1023; i>0; i -= 35)
strncat(data1, "Now is the time for all good onions", i);
memset(data2, 0, 1024);
memset(data3, 0, 1024);
env1 = crypto_new_cipher_env();
test_neq(env1, 0);
env2 = crypto_new_cipher_env();
test_neq(env2, 0);
j = crypto_cipher_generate_key(env1);
crypto_cipher_set_key(env2, crypto_cipher_get_key(env1));
crypto_cipher_encrypt_init_cipher(env1);
crypto_cipher_decrypt_init_cipher(env2);
/* Try encrypting 512 chars. */
crypto_cipher_encrypt(env1, data2, data1, 512);
crypto_cipher_decrypt(env2, data3, data2, 512);
test_memeq(data1, data3, 512);
test_memneq(data1, data2, 512);
/* Now encrypt 1 at a time, and get 1 at a time. */
for (j = 512; j < 560; ++j) {
crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
}
for (j = 512; j < 560; ++j) {
crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
}
test_memeq(data1, data3, 560);
/* Now encrypt 3 at a time, and get 5 at a time. */
for (j = 560; j < 1024-5; j += 3) {
crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
}
for (j = 560; j < 1024-5; j += 5) {
crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
}
test_memeq(data1, data3, 1024-5);
/* Now make sure that when we encrypt with different chunk sizes, we get
the same results. */
crypto_free_cipher_env(env2);
env2 = NULL;
memset(data3, 0, 1024);
env2 = crypto_new_cipher_env();
test_neq(env2, 0);
crypto_cipher_set_key(env2, crypto_cipher_get_key(env1));
crypto_cipher_encrypt_init_cipher(env2);
for (j = 0; j < 1024-16; j += 17) {
crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
}
for (j= 0; j < 1024-16; ++j) {
if (data2[j] != data3[j]) {
printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
}
}
test_memeq(data2, data3, 1024-16);
crypto_free_cipher_env(env1);
env1 = NULL;
crypto_free_cipher_env(env2);
env2 = NULL;
/* NIST test vector for aes. */
env1 = crypto_new_cipher_env(); /* IV starts at 0 */
crypto_cipher_set_key(env1, "\x80\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00");
crypto_cipher_encrypt_init_cipher(env1);
crypto_cipher_encrypt(env1, data1,
"\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00", 16);
test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
/* Now test rollover. All these values are originally from a python
* script. */
crypto_cipher_set_iv(env1, "\x00\x00\x00\x00\x00\x00\x00\x00"
"\xff\xff\xff\xff\xff\xff\xff\xff");
memset(data2, 0, 1024);
crypto_cipher_encrypt(env1, data1, data2, 32);
test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
"cdd0b917dbc7186908a6bfb5ffd574d3");
crypto_cipher_set_iv(env1, "\x00\x00\x00\x00\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff");
memset(data2, 0, 1024);
crypto_cipher_encrypt(env1, data1, data2, 32);
test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
"3e63c721df790d2c6469cc1953a3ffac");
crypto_cipher_set_iv(env1, "\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff");
memset(data2, 0, 1024);
crypto_cipher_encrypt(env1, data1, data2, 32);
test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
"0EDD33D3C621E546455BD8BA1418BEC8");
/* Now check rollover on inplace cipher. */
crypto_cipher_set_iv(env1, "\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff");
crypto_cipher_crypt_inplace(env1, data2, 64);
test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
"0EDD33D3C621E546455BD8BA1418BEC8"
"93e2c5243d6839eac58503919192f7ae"
"1908e67cafa08d508816659c2e693191");
crypto_cipher_set_iv(env1, "\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff");
crypto_cipher_crypt_inplace(env1, data2, 64);
test_assert(tor_mem_is_zero(data2, 64));
done:
if (env1)
crypto_free_cipher_env(env1);
if (env2)
crypto_free_cipher_env(env2);
tor_free(data1);
tor_free(data2);
tor_free(data3);
}
/** Run unit tests for our SHA-1 functionality */
static void
test_crypto_sha(void)
{
crypto_digest_env_t *d1 = NULL, *d2 = NULL;
int i;
char key[80];
char digest[32];
char data[50];
char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
/* Test SHA-1 with a test vector from the specification. */
i = crypto_digest(data, "abc", 3);
test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
/* Test SHA-256 with a test vector from the specification. */
i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
"96177A9CB410FF61F20015AD");
/* Test HMAC-SHA-1 with test cases from RFC2202. */
/* Case 1. */
memset(key, 0x0b, 20);
crypto_hmac_sha1(digest, key, 20, "Hi There", 8);
test_streq(hex_str(digest, 20),
"B617318655057264E28BC0B6FB378C8EF146BE00");
/* Case 2. */
crypto_hmac_sha1(digest, "Jefe", 4, "what do ya want for nothing?", 28);
test_streq(hex_str(digest, 20),
"EFFCDF6AE5EB2FA2D27416D5F184DF9C259A7C79");
/* Case 4. */
base16_decode(key, 25,
"0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
memset(data, 0xcd, 50);
crypto_hmac_sha1(digest, key, 25, data, 50);
test_streq(hex_str(digest, 20),
"4C9007F4026250C6BC8414F9BF50C86C2D7235DA");
/* Case 5. */
memset(key, 0xaa, 80);
crypto_hmac_sha1(digest, key, 80,
"Test Using Larger Than Block-Size Key - Hash Key First",
54);
test_streq(hex_str(digest, 20),
"AA4AE5E15272D00E95705637CE8A3B55ED402112");
/* Incremental digest code. */
d1 = crypto_new_digest_env();
test_assert(d1);
crypto_digest_add_bytes(d1, "abcdef", 6);
d2 = crypto_digest_dup(d1);
test_assert(d2);
crypto_digest_add_bytes(d2, "ghijkl", 6);
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
crypto_digest(d_out2, "abcdefghijkl", 12);
test_memeq(d_out1, d_out2, DIGEST_LEN);
crypto_digest_assign(d2, d1);
crypto_digest_add_bytes(d2, "mno", 3);
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
crypto_digest(d_out2, "abcdefmno", 9);
test_memeq(d_out1, d_out2, DIGEST_LEN);
crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
crypto_digest(d_out2, "abcdef", 6);
test_memeq(d_out1, d_out2, DIGEST_LEN);
crypto_free_digest_env(d1);
crypto_free_digest_env(d2);
/* Incremental digest code with sha256 */
d1 = crypto_new_digest256_env(DIGEST_SHA256);
test_assert(d1);
crypto_digest_add_bytes(d1, "abcdef", 6);
d2 = crypto_digest_dup(d1);
test_assert(d2);
crypto_digest_add_bytes(d2, "ghijkl", 6);
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
test_memeq(d_out1, d_out2, DIGEST_LEN);
crypto_digest_assign(d2, d1);
crypto_digest_add_bytes(d2, "mno", 3);
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
test_memeq(d_out1, d_out2, DIGEST_LEN);
crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
test_memeq(d_out1, d_out2, DIGEST_LEN);
done:
if (d1)
crypto_free_digest_env(d1);
if (d2)
crypto_free_digest_env(d2);
}
/** Run unit tests for our public key crypto functions */
static void
test_crypto_pk(void)
{
crypto_pk_env_t *pk1 = NULL, *pk2 = NULL;
char *encoded = NULL;
char data1[1024], data2[1024], data3[1024];
size_t size;
int i, j, p, len;
/* Public-key ciphers */
pk1 = pk_generate(0);
pk2 = crypto_new_pk_env();
test_assert(pk1 && pk2);
test_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
test_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
test_eq(0, crypto_pk_cmp_keys(pk1, pk2));
test_eq(128, crypto_pk_keysize(pk1));
test_eq(128, crypto_pk_keysize(pk2));
test_eq(128, crypto_pk_public_encrypt(pk2, data1, "Hello whirled.", 15,
PK_PKCS1_OAEP_PADDING));
test_eq(128, crypto_pk_public_encrypt(pk1, data2, "Hello whirled.", 15,
PK_PKCS1_OAEP_PADDING));
/* oaep padding should make encryption not match */
test_memneq(data1, data2, 128);
test_eq(15, crypto_pk_private_decrypt(pk1, data3, data1, 128,
PK_PKCS1_OAEP_PADDING,1));
test_streq(data3, "Hello whirled.");
memset(data3, 0, 1024);
test_eq(15, crypto_pk_private_decrypt(pk1, data3, data2, 128,
PK_PKCS1_OAEP_PADDING,1));
test_streq(data3, "Hello whirled.");
/* Can't decrypt with public key. */
test_eq(-1, crypto_pk_private_decrypt(pk2, data3, data2, 128,
PK_PKCS1_OAEP_PADDING,1));
/* Try again with bad padding */
memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
test_eq(-1, crypto_pk_private_decrypt(pk1, data3, data2, 128,
PK_PKCS1_OAEP_PADDING,1));
/* File operations: save and load private key */
test_assert(! crypto_pk_write_private_key_to_filename(pk1,
get_fname("pkey1")));
/* failing case for read: can't read. */
test_assert(crypto_pk_read_private_key_from_filename(pk2,
get_fname("xyzzy")) < 0);
write_str_to_file(get_fname("xyzzy"), "foobar", 6);
/* Failing case for read: no key. */
test_assert(crypto_pk_read_private_key_from_filename(pk2,
get_fname("xyzzy")) < 0);
test_assert(! crypto_pk_read_private_key_from_filename(pk2,
get_fname("pkey1")));
test_eq(15, crypto_pk_private_decrypt(pk2, data3, data1, 128,
PK_PKCS1_OAEP_PADDING,1));
/* Now try signing. */
strlcpy(data1, "Ossifrage", 1024);
test_eq(128, crypto_pk_private_sign(pk1, data2, data1, 10));
test_eq(10, crypto_pk_public_checksig(pk1, data3, data2, 128));
test_streq(data3, "Ossifrage");
/* Try signing digests. */
test_eq(128, crypto_pk_private_sign_digest(pk1, data2, data1, 10));
test_eq(20, crypto_pk_public_checksig(pk1, data3, data2, 128));
test_eq(0, crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
test_eq(-1, crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
/*XXXX test failed signing*/
/* Try encoding */
crypto_free_pk_env(pk2);
pk2 = NULL;
i = crypto_pk_asn1_encode(pk1, data1, 1024);
test_assert(i>0);
pk2 = crypto_pk_asn1_decode(data1, i);
test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
/* Try with hybrid encryption wrappers. */
crypto_rand(data1, 1024);
for (i = 0; i < 3; ++i) {
for (j = 85; j < 140; ++j) {
memset(data2,0,1024);
memset(data3,0,1024);
if (i == 0 && j < 129)
continue;
p = (i==0)?PK_NO_PADDING:
(i==1)?PK_PKCS1_PADDING:PK_PKCS1_OAEP_PADDING;
len = crypto_pk_public_hybrid_encrypt(pk1,data2,data1,j,p,0);
test_assert(len>=0);
len = crypto_pk_private_hybrid_decrypt(pk1,data3,data2,len,p,1);
test_eq(len,j);
test_memeq(data1,data3,j);
}
}
/* Try copy_full */
crypto_free_pk_env(pk2);
pk2 = crypto_pk_copy_full(pk1);
test_assert(pk2 != NULL);
test_neq_ptr(pk1, pk2);
test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
done:
if (pk1)
crypto_free_pk_env(pk1);
if (pk2)
crypto_free_pk_env(pk2);
tor_free(encoded);
}
/** Run unit tests for misc crypto functionality. */
static void
test_crypto(void)
{
char *data1 = NULL, *data2 = NULL, *data3 = NULL;
int i, j, idx;
data1 = tor_malloc(1024);
data2 = tor_malloc(1024);
data3 = tor_malloc(1024);
test_assert(data1 && data2 && data3);
/* Base64 tests */
memset(data1, 6, 1024);
for (idx = 0; idx < 10; ++idx) {
i = base64_encode(data2, 1024, data1, idx);
test_assert(i >= 0);
j = base64_decode(data3, 1024, data2, i);
test_eq(j,idx);
test_memeq(data3, data1, idx);
}
strlcpy(data1, "Test string that contains 35 chars.", 1024);
strlcat(data1, " 2nd string that contains 35 chars.", 1024);
i = base64_encode(data2, 1024, data1, 71);
j = base64_decode(data3, 1024, data2, i);
test_eq(j, 71);
test_streq(data3, data1);
test_assert(data2[i] == '\0');
crypto_rand(data1, DIGEST_LEN);
memset(data2, 100, 1024);
digest_to_base64(data2, data1);
test_eq(BASE64_DIGEST_LEN, strlen(data2));
test_eq(100, data2[BASE64_DIGEST_LEN+2]);
memset(data3, 99, 1024);
test_eq(digest_from_base64(data3, data2), 0);
test_memeq(data1, data3, DIGEST_LEN);
test_eq(99, data3[DIGEST_LEN+1]);
test_assert(digest_from_base64(data3, "###") < 0);
/* Base32 tests */
strlcpy(data1, "5chrs", 1024);
/* bit pattern is: [35 63 68 72 73] ->
* [00110101 01100011 01101000 01110010 01110011]
* By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
*/
base32_encode(data2, 9, data1, 5);
test_streq(data2, "gvrwq4tt");
strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
base32_encode(data2, 30, data1, 10);
test_streq(data2, "772w2rfobvomsywe");
/* Base16 tests */
strlcpy(data1, "6chrs\xff", 1024);
base16_encode(data2, 13, data1, 6);
test_streq(data2, "3663687273FF");
strlcpy(data1, "f0d678affc000100", 1024);
i = base16_decode(data2, 8, data1, 16);
test_eq(i,0);
test_memeq(data2, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
/* now try some failing base16 decodes */
test_eq(-1, base16_decode(data2, 8, data1, 15)); /* odd input len */
test_eq(-1, base16_decode(data2, 7, data1, 16)); /* dest too short */
strlcpy(data1, "f0dz!8affc000100", 1024);
test_eq(-1, base16_decode(data2, 8, data1, 16));
tor_free(data1);
tor_free(data2);
tor_free(data3);
/* Add spaces to fingerprint */
{
data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
test_eq(strlen(data1), 40);
data2 = tor_malloc(FINGERPRINT_LEN+1);
add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
test_streq(data2, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
tor_free(data1);
tor_free(data2);
}
/* Check fingerprint */
{
test_assert(crypto_pk_check_fingerprint_syntax(
"ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000"));
test_assert(!crypto_pk_check_fingerprint_syntax(
"ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 000"));
test_assert(!crypto_pk_check_fingerprint_syntax(
"ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 00000"));
test_assert(!crypto_pk_check_fingerprint_syntax(
"ABCD 1234 ABCD 5678 0000 ABCD1234 ABCD 5678 0000"));
test_assert(!crypto_pk_check_fingerprint_syntax(
"ABCD 1234 ABCD 5678 0000 ABCD1234 ABCD 5678 00000"));
test_assert(!crypto_pk_check_fingerprint_syntax(
"ACD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 00000"));
}
done:
tor_free(data1);
tor_free(data2);
tor_free(data3);
}
/** Run unit tests for our secret-to-key passphrase hashing functionality. */
static void
test_crypto_s2k(void)
{
char buf[29];
char buf2[29];
char *buf3 = NULL;
int i;
memset(buf, 0, sizeof(buf));
memset(buf2, 0, sizeof(buf2));
buf3 = tor_malloc(65536);
memset(buf3, 0, 65536);
secret_to_key(buf+9, 20, "", 0, buf);
crypto_digest(buf2+9, buf3, 1024);
test_memeq(buf, buf2, 29);
memcpy(buf,"vrbacrda",8);
memcpy(buf2,"vrbacrda",8);
buf[8] = 96;
buf2[8] = 96;
secret_to_key(buf+9, 20, "12345678", 8, buf);
for (i = 0; i < 65536; i += 16) {
memcpy(buf3+i, "vrbacrda12345678", 16);
}
crypto_digest(buf2+9, buf3, 65536);
test_memeq(buf, buf2, 29);
done:
tor_free(buf3);
}
/** Helper: return a tristate based on comparing the strings in *<b>a</b> and
* *<b>b</b>. */
static int
@ -4667,189 +4108,6 @@ test_util_strtok(void)
;
}
/** Test AES-CTR encryption and decryption with IV. */
static void
test_crypto_aes_iv(void)
{
crypto_cipher_env_t *cipher;
char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
char key1[16], key2[16];
ssize_t encrypted_size, decrypted_size;
plain = tor_malloc(4095);
encrypted1 = tor_malloc(4095 + 1 + 16);
encrypted2 = tor_malloc(4095 + 1 + 16);
decrypted1 = tor_malloc(4095 + 1);
decrypted2 = tor_malloc(4095 + 1);
crypto_rand(plain, 4095);
crypto_rand(key1, 16);
crypto_rand(key2, 16);
crypto_rand(plain_1, 1);
crypto_rand(plain_15, 15);
crypto_rand(plain_16, 16);
crypto_rand(plain_17, 17);
key1[0] = key2[0] + 128; /* Make sure that contents are different. */
/* Encrypt and decrypt with the same key. */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted1, 16 + 4095,
plain, 4095);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 4095);
tor_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
* greater than 0, but its truth is not
* obvious to all analysis tools. */
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 4095,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(decrypted_size, 4095);
tor_assert(decrypted_size > 0);
test_memeq(plain, decrypted1, 4095);
/* Encrypt a second time (with a new random initialization vector). */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted2, 16 + 4095,
plain, 4095);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 4095);
tor_assert(encrypted_size > 0);
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted2, 4095,
encrypted2, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(decrypted_size, 4095);
tor_assert(decrypted_size > 0);
test_memeq(plain, decrypted2, 4095);
test_memneq(encrypted1, encrypted2, encrypted_size);
/* Decrypt with the wrong key. */
cipher = crypto_create_init_cipher(key2, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted2, 4095,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_memneq(plain, decrypted2, encrypted_size);
/* Alter the initialization vector. */
encrypted1[0] += 42;
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 4095,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_memneq(plain, decrypted2, 4095);
/* Special length case: 1. */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted1, 16 + 1,
plain_1, 1);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 1);
tor_assert(encrypted_size > 0);
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 1,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(decrypted_size, 1);
tor_assert(decrypted_size > 0);
test_memeq(plain_1, decrypted1, 1);
/* Special length case: 15. */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted1, 16 + 15,
plain_15, 15);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 15);
tor_assert(encrypted_size > 0);
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 15,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(decrypted_size, 15);
tor_assert(decrypted_size > 0);
test_memeq(plain_15, decrypted1, 15);
/* Special length case: 16. */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted1, 16 + 16,
plain_16, 16);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 16);
tor_assert(encrypted_size > 0);
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 16,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(decrypted_size, 16);
tor_assert(decrypted_size > 0);
test_memeq(plain_16, decrypted1, 16);
/* Special length case: 17. */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted1, 16 + 17,
plain_17, 17);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 17);
tor_assert(encrypted_size > 0);
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 17,
encrypted1, encrypted_size);
test_eq(decrypted_size, 17);
tor_assert(decrypted_size > 0);
test_memeq(plain_17, decrypted1, 17);
done:
/* Free memory. */
tor_free(plain);
tor_free(encrypted1);
tor_free(encrypted2);
tor_free(decrypted1);
tor_free(decrypted2);
if (cipher)
crypto_free_cipher_env(cipher);
}
/** Test base32 decoding. */
static void
test_crypto_base32_decode(void)
{
char plain[60], encoded[96 + 1], decoded[60];
int res;
crypto_rand(plain, 60);
/* Encode and decode a random string. */
base32_encode(encoded, 96 + 1, plain, 60);
res = base32_decode(decoded, 60, encoded, 96);
test_eq(res, 0);
test_memeq(plain, decoded, 60);
/* Encode, uppercase, and decode a random string. */
base32_encode(encoded, 96 + 1, plain, 60);
tor_strupper(encoded);
res = base32_decode(decoded, 60, encoded, 96);
test_eq(res, 0);
test_memeq(plain, decoded, 60);
/* Change encoded string and decode. */
if (encoded[0] == 'A' || encoded[0] == 'a')
encoded[0] = 'B';
else
encoded[0] = 'A';
res = base32_decode(decoded, 60, encoded, 96);
test_eq(res, 0);
test_memneq(plain, decoded, 60);
/* Bad encodings. */
encoded[0] = '!';
res = base32_decode(decoded, 60, encoded, 96);
test_assert(res < 0);
done:
;
}
/** Test encoding and parsing of rendezvous service descriptors. */
static void
test_rend_fns(void)
@ -5031,7 +4289,7 @@ legacy_test_setup(const struct testcase_t *testcase)
return testcase->setup_data;
}
static void
void
legacy_test_helper(void *data)
{
void (*fn)(void) = data;
@ -5046,7 +4304,7 @@ legacy_test_cleanup(const struct testcase_t *testcase, void *ptr)
return 1;
}
static const struct testcase_setup_t legacy_setup = {
const struct testcase_setup_t legacy_setup = {
legacy_test_setup, legacy_test_cleanup
};
@ -5060,15 +4318,6 @@ static const struct testcase_setup_t legacy_setup = {
static struct testcase_t test_array[] = {
ENT(buffers),
ENT(crypto),
SUBENT(crypto, rng),
SUBENT(crypto, aes),
SUBENT(crypto, sha),
SUBENT(crypto, pk),
SUBENT(crypto, dh),
SUBENT(crypto, s2k),
SUBENT(crypto, aes_iv),
SUBENT(crypto, base32_decode),
ENT(util),
SUBENT(util, ip6_helpers),
SUBENT(util, gzip),
@ -5106,8 +4355,11 @@ static struct testcase_t test_array[] = {
END_OF_TESTCASES
};
extern struct testcase_t crypto_tests[];
static struct testgroup_t testgroups[] = {
{ "", test_array },
{ "crypto/", crypto_tests },
END_OF_GROUPS
};

View File

@ -8,7 +8,7 @@
/**
* \file test.h
* \brief Macros used by unit tests.
* \brief Macros and functions used by unit tests.
*/
#include "compat.h"
@ -62,5 +62,11 @@
#define test_memeq_hex(expr1, hex) test_mem_op_hex(expr1, ==, hex)
const char *get_fname(const char *name);
crypto_pk_env_t *pk_generate(int idx);
void legacy_test_helper(void *data);
extern const struct testcase_setup_t legacy_setup;
#endif

768
src/test/test_crypto.c Normal file
View File

@ -0,0 +1,768 @@
/* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2009, The Tor Project, Inc. */
/* See LICENSE for licensing information */
#include "orconfig.h"
#define CRYPTO_PRIVATE
#include "or.h"
#include "test.h"
/** Run unit tests for Diffie-Hellman functionality. */
static void
test_crypto_dh(void)
{
crypto_dh_env_t *dh1 = crypto_dh_new();
crypto_dh_env_t *dh2 = crypto_dh_new();
char p1[DH_BYTES];
char p2[DH_BYTES];
char s1[DH_BYTES];
char s2[DH_BYTES];
ssize_t s1len, s2len;
test_eq(crypto_dh_get_bytes(dh1), DH_BYTES);
test_eq(crypto_dh_get_bytes(dh2), DH_BYTES);
memset(p1, 0, DH_BYTES);
memset(p2, 0, DH_BYTES);
test_memeq(p1, p2, DH_BYTES);
test_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
test_memneq(p1, p2, DH_BYTES);
test_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
test_memneq(p1, p2, DH_BYTES);
memset(s1, 0, DH_BYTES);
memset(s2, 0xFF, DH_BYTES);
s1len = crypto_dh_compute_secret(dh1, p2, DH_BYTES, s1, 50);
s2len = crypto_dh_compute_secret(dh2, p1, DH_BYTES, s2, 50);
test_assert(s1len > 0);
test_eq(s1len, s2len);
test_memeq(s1, s2, s1len);
{
/* XXXX Now fabricate some bad values and make sure they get caught,
* Check 0, 1, N-1, >= N, etc.
*/
}
done:
crypto_dh_free(dh1);
crypto_dh_free(dh2);
}
/** Run unit tests for our random number generation function and its wrappers.
*/
static void
test_crypto_rng(void)
{
int i, j, allok;
char data1[100], data2[100];
/* Try out RNG. */
test_assert(! crypto_seed_rng(0));
crypto_rand(data1, 100);
crypto_rand(data2, 100);
test_memneq(data1,data2,100);
allok = 1;
for (i = 0; i < 100; ++i) {
uint64_t big;
char *host;
j = crypto_rand_int(100);
if (i < 0 || i >= 100)
allok = 0;
big = crypto_rand_uint64(U64_LITERAL(1)<<40);
if (big >= (U64_LITERAL(1)<<40))
allok = 0;
big = crypto_rand_uint64(U64_LITERAL(5));
if (big >= 5)
allok = 0;
host = crypto_random_hostname(3,8,"www.",".onion");
if (strcmpstart(host,"www.") ||
strcmpend(host,".onion") ||
strlen(host) < 13 ||
strlen(host) > 18)
allok = 0;
tor_free(host);
}
test_assert(allok);
done:
;
}
/** Run unit tests for our AES functionality */
static void
test_crypto_aes(void)
{
char *data1 = NULL, *data2 = NULL, *data3 = NULL;
crypto_cipher_env_t *env1 = NULL, *env2 = NULL;
int i, j;
data1 = tor_malloc(1024);
data2 = tor_malloc(1024);
data3 = tor_malloc(1024);
/* Now, test encryption and decryption with stream cipher. */
data1[0]='\0';
for (i = 1023; i>0; i -= 35)
strncat(data1, "Now is the time for all good onions", i);
memset(data2, 0, 1024);
memset(data3, 0, 1024);
env1 = crypto_new_cipher_env();
test_neq(env1, 0);
env2 = crypto_new_cipher_env();
test_neq(env2, 0);
j = crypto_cipher_generate_key(env1);
crypto_cipher_set_key(env2, crypto_cipher_get_key(env1));
crypto_cipher_encrypt_init_cipher(env1);
crypto_cipher_decrypt_init_cipher(env2);
/* Try encrypting 512 chars. */
crypto_cipher_encrypt(env1, data2, data1, 512);
crypto_cipher_decrypt(env2, data3, data2, 512);
test_memeq(data1, data3, 512);
test_memneq(data1, data2, 512);
/* Now encrypt 1 at a time, and get 1 at a time. */
for (j = 512; j < 560; ++j) {
crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
}
for (j = 512; j < 560; ++j) {
crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
}
test_memeq(data1, data3, 560);
/* Now encrypt 3 at a time, and get 5 at a time. */
for (j = 560; j < 1024-5; j += 3) {
crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
}
for (j = 560; j < 1024-5; j += 5) {
crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
}
test_memeq(data1, data3, 1024-5);
/* Now make sure that when we encrypt with different chunk sizes, we get
the same results. */
crypto_free_cipher_env(env2);
env2 = NULL;
memset(data3, 0, 1024);
env2 = crypto_new_cipher_env();
test_neq(env2, 0);
crypto_cipher_set_key(env2, crypto_cipher_get_key(env1));
crypto_cipher_encrypt_init_cipher(env2);
for (j = 0; j < 1024-16; j += 17) {
crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
}
for (j= 0; j < 1024-16; ++j) {
if (data2[j] != data3[j]) {
printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
}
}
test_memeq(data2, data3, 1024-16);
crypto_free_cipher_env(env1);
env1 = NULL;
crypto_free_cipher_env(env2);
env2 = NULL;
/* NIST test vector for aes. */
env1 = crypto_new_cipher_env(); /* IV starts at 0 */
crypto_cipher_set_key(env1, "\x80\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00");
crypto_cipher_encrypt_init_cipher(env1);
crypto_cipher_encrypt(env1, data1,
"\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00", 16);
test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
/* Now test rollover. All these values are originally from a python
* script. */
crypto_cipher_set_iv(env1, "\x00\x00\x00\x00\x00\x00\x00\x00"
"\xff\xff\xff\xff\xff\xff\xff\xff");
memset(data2, 0, 1024);
crypto_cipher_encrypt(env1, data1, data2, 32);
test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
"cdd0b917dbc7186908a6bfb5ffd574d3");
crypto_cipher_set_iv(env1, "\x00\x00\x00\x00\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff");
memset(data2, 0, 1024);
crypto_cipher_encrypt(env1, data1, data2, 32);
test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
"3e63c721df790d2c6469cc1953a3ffac");
crypto_cipher_set_iv(env1, "\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff");
memset(data2, 0, 1024);
crypto_cipher_encrypt(env1, data1, data2, 32);
test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
"0EDD33D3C621E546455BD8BA1418BEC8");
/* Now check rollover on inplace cipher. */
crypto_cipher_set_iv(env1, "\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff");
crypto_cipher_crypt_inplace(env1, data2, 64);
test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
"0EDD33D3C621E546455BD8BA1418BEC8"
"93e2c5243d6839eac58503919192f7ae"
"1908e67cafa08d508816659c2e693191");
crypto_cipher_set_iv(env1, "\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff");
crypto_cipher_crypt_inplace(env1, data2, 64);
test_assert(tor_mem_is_zero(data2, 64));
done:
if (env1)
crypto_free_cipher_env(env1);
if (env2)
crypto_free_cipher_env(env2);
tor_free(data1);
tor_free(data2);
tor_free(data3);
}
/** Run unit tests for our SHA-1 functionality */
static void
test_crypto_sha(void)
{
crypto_digest_env_t *d1 = NULL, *d2 = NULL;
int i;
char key[80];
char digest[32];
char data[50];
char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
/* Test SHA-1 with a test vector from the specification. */
i = crypto_digest(data, "abc", 3);
test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
/* Test SHA-256 with a test vector from the specification. */
i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
"96177A9CB410FF61F20015AD");
/* Test HMAC-SHA-1 with test cases from RFC2202. */
/* Case 1. */
memset(key, 0x0b, 20);
crypto_hmac_sha1(digest, key, 20, "Hi There", 8);
test_streq(hex_str(digest, 20),
"B617318655057264E28BC0B6FB378C8EF146BE00");
/* Case 2. */
crypto_hmac_sha1(digest, "Jefe", 4, "what do ya want for nothing?", 28);
test_streq(hex_str(digest, 20),
"EFFCDF6AE5EB2FA2D27416D5F184DF9C259A7C79");
/* Case 4. */
base16_decode(key, 25,
"0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
memset(data, 0xcd, 50);
crypto_hmac_sha1(digest, key, 25, data, 50);
test_streq(hex_str(digest, 20),
"4C9007F4026250C6BC8414F9BF50C86C2D7235DA");
/* Case 5. */
memset(key, 0xaa, 80);
crypto_hmac_sha1(digest, key, 80,
"Test Using Larger Than Block-Size Key - Hash Key First",
54);
test_streq(hex_str(digest, 20),
"AA4AE5E15272D00E95705637CE8A3B55ED402112");
/* Incremental digest code. */
d1 = crypto_new_digest_env();
test_assert(d1);
crypto_digest_add_bytes(d1, "abcdef", 6);
d2 = crypto_digest_dup(d1);
test_assert(d2);
crypto_digest_add_bytes(d2, "ghijkl", 6);
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
crypto_digest(d_out2, "abcdefghijkl", 12);
test_memeq(d_out1, d_out2, DIGEST_LEN);
crypto_digest_assign(d2, d1);
crypto_digest_add_bytes(d2, "mno", 3);
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
crypto_digest(d_out2, "abcdefmno", 9);
test_memeq(d_out1, d_out2, DIGEST_LEN);
crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
crypto_digest(d_out2, "abcdef", 6);
test_memeq(d_out1, d_out2, DIGEST_LEN);
crypto_free_digest_env(d1);
crypto_free_digest_env(d2);
/* Incremental digest code with sha256 */
d1 = crypto_new_digest256_env(DIGEST_SHA256);
test_assert(d1);
crypto_digest_add_bytes(d1, "abcdef", 6);
d2 = crypto_digest_dup(d1);
test_assert(d2);
crypto_digest_add_bytes(d2, "ghijkl", 6);
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
test_memeq(d_out1, d_out2, DIGEST_LEN);
crypto_digest_assign(d2, d1);
crypto_digest_add_bytes(d2, "mno", 3);
crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
test_memeq(d_out1, d_out2, DIGEST_LEN);
crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
test_memeq(d_out1, d_out2, DIGEST_LEN);
done:
if (d1)
crypto_free_digest_env(d1);
if (d2)
crypto_free_digest_env(d2);
}
/** Run unit tests for our public key crypto functions */
static void
test_crypto_pk(void)
{
crypto_pk_env_t *pk1 = NULL, *pk2 = NULL;
char *encoded = NULL;
char data1[1024], data2[1024], data3[1024];
size_t size;
int i, j, p, len;
/* Public-key ciphers */
pk1 = pk_generate(0);
pk2 = crypto_new_pk_env();
test_assert(pk1 && pk2);
test_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
test_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
test_eq(0, crypto_pk_cmp_keys(pk1, pk2));
test_eq(128, crypto_pk_keysize(pk1));
test_eq(128, crypto_pk_keysize(pk2));
test_eq(128, crypto_pk_public_encrypt(pk2, data1, "Hello whirled.", 15,
PK_PKCS1_OAEP_PADDING));
test_eq(128, crypto_pk_public_encrypt(pk1, data2, "Hello whirled.", 15,
PK_PKCS1_OAEP_PADDING));
/* oaep padding should make encryption not match */
test_memneq(data1, data2, 128);
test_eq(15, crypto_pk_private_decrypt(pk1, data3, data1, 128,
PK_PKCS1_OAEP_PADDING,1));
test_streq(data3, "Hello whirled.");
memset(data3, 0, 1024);
test_eq(15, crypto_pk_private_decrypt(pk1, data3, data2, 128,
PK_PKCS1_OAEP_PADDING,1));
test_streq(data3, "Hello whirled.");
/* Can't decrypt with public key. */
test_eq(-1, crypto_pk_private_decrypt(pk2, data3, data2, 128,
PK_PKCS1_OAEP_PADDING,1));
/* Try again with bad padding */
memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
test_eq(-1, crypto_pk_private_decrypt(pk1, data3, data2, 128,
PK_PKCS1_OAEP_PADDING,1));
/* File operations: save and load private key */
test_assert(! crypto_pk_write_private_key_to_filename(pk1,
get_fname("pkey1")));
/* failing case for read: can't read. */
test_assert(crypto_pk_read_private_key_from_filename(pk2,
get_fname("xyzzy")) < 0);
write_str_to_file(get_fname("xyzzy"), "foobar", 6);
/* Failing case for read: no key. */
test_assert(crypto_pk_read_private_key_from_filename(pk2,
get_fname("xyzzy")) < 0);
test_assert(! crypto_pk_read_private_key_from_filename(pk2,
get_fname("pkey1")));
test_eq(15, crypto_pk_private_decrypt(pk2, data3, data1, 128,
PK_PKCS1_OAEP_PADDING,1));
/* Now try signing. */
strlcpy(data1, "Ossifrage", 1024);
test_eq(128, crypto_pk_private_sign(pk1, data2, data1, 10));
test_eq(10, crypto_pk_public_checksig(pk1, data3, data2, 128));
test_streq(data3, "Ossifrage");
/* Try signing digests. */
test_eq(128, crypto_pk_private_sign_digest(pk1, data2, data1, 10));
test_eq(20, crypto_pk_public_checksig(pk1, data3, data2, 128));
test_eq(0, crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
test_eq(-1, crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
/*XXXX test failed signing*/
/* Try encoding */
crypto_free_pk_env(pk2);
pk2 = NULL;
i = crypto_pk_asn1_encode(pk1, data1, 1024);
test_assert(i>0);
pk2 = crypto_pk_asn1_decode(data1, i);
test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
/* Try with hybrid encryption wrappers. */
crypto_rand(data1, 1024);
for (i = 0; i < 3; ++i) {
for (j = 85; j < 140; ++j) {
memset(data2,0,1024);
memset(data3,0,1024);
if (i == 0 && j < 129)
continue;
p = (i==0)?PK_NO_PADDING:
(i==1)?PK_PKCS1_PADDING:PK_PKCS1_OAEP_PADDING;
len = crypto_pk_public_hybrid_encrypt(pk1,data2,data1,j,p,0);
test_assert(len>=0);
len = crypto_pk_private_hybrid_decrypt(pk1,data3,data2,len,p,1);
test_eq(len,j);
test_memeq(data1,data3,j);
}
}
/* Try copy_full */
crypto_free_pk_env(pk2);
pk2 = crypto_pk_copy_full(pk1);
test_assert(pk2 != NULL);
test_neq_ptr(pk1, pk2);
test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
done:
if (pk1)
crypto_free_pk_env(pk1);
if (pk2)
crypto_free_pk_env(pk2);
tor_free(encoded);
}
/** Run unit tests for misc crypto formatting functionality (base64, base32,
* fingerprints, etc) */
static void
test_crypto_formats(void)
{
char *data1 = NULL, *data2 = NULL, *data3 = NULL;
int i, j, idx;
data1 = tor_malloc(1024);
data2 = tor_malloc(1024);
data3 = tor_malloc(1024);
test_assert(data1 && data2 && data3);
/* Base64 tests */
memset(data1, 6, 1024);
for (idx = 0; idx < 10; ++idx) {
i = base64_encode(data2, 1024, data1, idx);
test_assert(i >= 0);
j = base64_decode(data3, 1024, data2, i);
test_eq(j,idx);
test_memeq(data3, data1, idx);
}
strlcpy(data1, "Test string that contains 35 chars.", 1024);
strlcat(data1, " 2nd string that contains 35 chars.", 1024);
i = base64_encode(data2, 1024, data1, 71);
j = base64_decode(data3, 1024, data2, i);
test_eq(j, 71);
test_streq(data3, data1);
test_assert(data2[i] == '\0');
crypto_rand(data1, DIGEST_LEN);
memset(data2, 100, 1024);
digest_to_base64(data2, data1);
test_eq(BASE64_DIGEST_LEN, strlen(data2));
test_eq(100, data2[BASE64_DIGEST_LEN+2]);
memset(data3, 99, 1024);
test_eq(digest_from_base64(data3, data2), 0);
test_memeq(data1, data3, DIGEST_LEN);
test_eq(99, data3[DIGEST_LEN+1]);
test_assert(digest_from_base64(data3, "###") < 0);
/* Base32 tests */
strlcpy(data1, "5chrs", 1024);
/* bit pattern is: [35 63 68 72 73] ->
* [00110101 01100011 01101000 01110010 01110011]
* By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
*/
base32_encode(data2, 9, data1, 5);
test_streq(data2, "gvrwq4tt");
strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
base32_encode(data2, 30, data1, 10);
test_streq(data2, "772w2rfobvomsywe");
/* Base16 tests */
strlcpy(data1, "6chrs\xff", 1024);
base16_encode(data2, 13, data1, 6);
test_streq(data2, "3663687273FF");
strlcpy(data1, "f0d678affc000100", 1024);
i = base16_decode(data2, 8, data1, 16);
test_eq(i,0);
test_memeq(data2, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
/* now try some failing base16 decodes */
test_eq(-1, base16_decode(data2, 8, data1, 15)); /* odd input len */
test_eq(-1, base16_decode(data2, 7, data1, 16)); /* dest too short */
strlcpy(data1, "f0dz!8affc000100", 1024);
test_eq(-1, base16_decode(data2, 8, data1, 16));
tor_free(data1);
tor_free(data2);
tor_free(data3);
/* Add spaces to fingerprint */
{
data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
test_eq(strlen(data1), 40);
data2 = tor_malloc(FINGERPRINT_LEN+1);
add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
test_streq(data2, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
tor_free(data1);
tor_free(data2);
}
/* Check fingerprint */
{
test_assert(crypto_pk_check_fingerprint_syntax(
"ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000"));
test_assert(!crypto_pk_check_fingerprint_syntax(
"ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 000"));
test_assert(!crypto_pk_check_fingerprint_syntax(
"ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 00000"));
test_assert(!crypto_pk_check_fingerprint_syntax(
"ABCD 1234 ABCD 5678 0000 ABCD1234 ABCD 5678 0000"));
test_assert(!crypto_pk_check_fingerprint_syntax(
"ABCD 1234 ABCD 5678 0000 ABCD1234 ABCD 5678 00000"));
test_assert(!crypto_pk_check_fingerprint_syntax(
"ACD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 00000"));
}
done:
tor_free(data1);
tor_free(data2);
tor_free(data3);
}
/** Run unit tests for our secret-to-key passphrase hashing functionality. */
static void
test_crypto_s2k(void)
{
char buf[29];
char buf2[29];
char *buf3 = NULL;
int i;
memset(buf, 0, sizeof(buf));
memset(buf2, 0, sizeof(buf2));
buf3 = tor_malloc(65536);
memset(buf3, 0, 65536);
secret_to_key(buf+9, 20, "", 0, buf);
crypto_digest(buf2+9, buf3, 1024);
test_memeq(buf, buf2, 29);
memcpy(buf,"vrbacrda",8);
memcpy(buf2,"vrbacrda",8);
buf[8] = 96;
buf2[8] = 96;
secret_to_key(buf+9, 20, "12345678", 8, buf);
for (i = 0; i < 65536; i += 16) {
memcpy(buf3+i, "vrbacrda12345678", 16);
}
crypto_digest(buf2+9, buf3, 65536);
test_memeq(buf, buf2, 29);
done:
tor_free(buf3);
}
/** Test AES-CTR encryption and decryption with IV. */
static void
test_crypto_aes_iv(void)
{
crypto_cipher_env_t *cipher;
char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
char key1[16], key2[16];
ssize_t encrypted_size, decrypted_size;
plain = tor_malloc(4095);
encrypted1 = tor_malloc(4095 + 1 + 16);
encrypted2 = tor_malloc(4095 + 1 + 16);
decrypted1 = tor_malloc(4095 + 1);
decrypted2 = tor_malloc(4095 + 1);
crypto_rand(plain, 4095);
crypto_rand(key1, 16);
crypto_rand(key2, 16);
crypto_rand(plain_1, 1);
crypto_rand(plain_15, 15);
crypto_rand(plain_16, 16);
crypto_rand(plain_17, 17);
key1[0] = key2[0] + 128; /* Make sure that contents are different. */
/* Encrypt and decrypt with the same key. */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted1, 16 + 4095,
plain, 4095);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 4095);
tor_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
* greater than 0, but its truth is not
* obvious to all analysis tools. */
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 4095,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(decrypted_size, 4095);
tor_assert(decrypted_size > 0);
test_memeq(plain, decrypted1, 4095);
/* Encrypt a second time (with a new random initialization vector). */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted2, 16 + 4095,
plain, 4095);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 4095);
tor_assert(encrypted_size > 0);
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted2, 4095,
encrypted2, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(decrypted_size, 4095);
tor_assert(decrypted_size > 0);
test_memeq(plain, decrypted2, 4095);
test_memneq(encrypted1, encrypted2, encrypted_size);
/* Decrypt with the wrong key. */
cipher = crypto_create_init_cipher(key2, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted2, 4095,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_memneq(plain, decrypted2, encrypted_size);
/* Alter the initialization vector. */
encrypted1[0] += 42;
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 4095,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_memneq(plain, decrypted2, 4095);
/* Special length case: 1. */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted1, 16 + 1,
plain_1, 1);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 1);
tor_assert(encrypted_size > 0);
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 1,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(decrypted_size, 1);
tor_assert(decrypted_size > 0);
test_memeq(plain_1, decrypted1, 1);
/* Special length case: 15. */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted1, 16 + 15,
plain_15, 15);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 15);
tor_assert(encrypted_size > 0);
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 15,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(decrypted_size, 15);
tor_assert(decrypted_size > 0);
test_memeq(plain_15, decrypted1, 15);
/* Special length case: 16. */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted1, 16 + 16,
plain_16, 16);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 16);
tor_assert(encrypted_size > 0);
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 16,
encrypted1, encrypted_size);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(decrypted_size, 16);
tor_assert(decrypted_size > 0);
test_memeq(plain_16, decrypted1, 16);
/* Special length case: 17. */
cipher = crypto_create_init_cipher(key1, 1);
encrypted_size = crypto_cipher_encrypt_with_iv(cipher, encrypted1, 16 + 17,
plain_17, 17);
crypto_free_cipher_env(cipher);
cipher = NULL;
test_eq(encrypted_size, 16 + 17);
tor_assert(encrypted_size > 0);
cipher = crypto_create_init_cipher(key1, 0);
decrypted_size = crypto_cipher_decrypt_with_iv(cipher, decrypted1, 17,
encrypted1, encrypted_size);
test_eq(decrypted_size, 17);
tor_assert(decrypted_size > 0);
test_memeq(plain_17, decrypted1, 17);
done:
/* Free memory. */
tor_free(plain);
tor_free(encrypted1);
tor_free(encrypted2);
tor_free(decrypted1);
tor_free(decrypted2);
if (cipher)
crypto_free_cipher_env(cipher);
}
/** Test base32 decoding. */
static void
test_crypto_base32_decode(void)
{
char plain[60], encoded[96 + 1], decoded[60];
int res;
crypto_rand(plain, 60);
/* Encode and decode a random string. */
base32_encode(encoded, 96 + 1, plain, 60);
res = base32_decode(decoded, 60, encoded, 96);
test_eq(res, 0);
test_memeq(plain, decoded, 60);
/* Encode, uppercase, and decode a random string. */
base32_encode(encoded, 96 + 1, plain, 60);
tor_strupper(encoded);
res = base32_decode(decoded, 60, encoded, 96);
test_eq(res, 0);
test_memeq(plain, decoded, 60);
/* Change encoded string and decode. */
if (encoded[0] == 'A' || encoded[0] == 'a')
encoded[0] = 'B';
else
encoded[0] = 'A';
res = base32_decode(decoded, 60, encoded, 96);
test_eq(res, 0);
test_memneq(plain, decoded, 60);
/* Bad encodings. */
encoded[0] = '!';
res = base32_decode(decoded, 60, encoded, 96);
test_assert(res < 0);
done:
;
}
#define CRYPTO_LEGACY(name) \
{ #name, legacy_test_helper, 0, &legacy_setup, test_crypto_ ## name }
struct testcase_t crypto_tests[] = {
CRYPTO_LEGACY(formats),
CRYPTO_LEGACY(rng),
CRYPTO_LEGACY(aes),
CRYPTO_LEGACY(sha),
CRYPTO_LEGACY(pk),
CRYPTO_LEGACY(dh),
CRYPTO_LEGACY(s2k),
CRYPTO_LEGACY(aes_iv),
CRYPTO_LEGACY(base32_decode),
END_OF_TESTCASES
};