Inform the user if they're passing up a 10x ECDH speedup.

This commit is contained in:
Nick Mathewson 2012-12-25 17:39:09 -05:00
parent 2f8fd53750
commit c8b3bdb782

View File

@ -526,6 +526,38 @@ tor_tls_init(void)
SSLeay_version(SSLEAY_VERSION), version);
}
#if (SIZEOF_VOID_P >= 8 && \
!defined(OPENSSL_NO_EC) && \
OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,0,1))
if (version >= OPENSSL_V_SERIES(1,0,1)) {
/* Warn if we could *almost* be running with much faster ECDH.
If we're built for a 64-bit target, using OpenSSL 1.0.1, but we
don't have one of the built-in __uint128-based speedups, we are
just one build operation away from an accelerated handshake.
(We could be looking at OPENSSL_NO_EC_NISTP_64_GCC_128 instead of
doing this test, but that gives compile-time options, not runtime
behavior.)
*/
EC_KEY *key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
const EC_GROUP *g = key ? EC_KEY_get0_group(key) : NULL;
const EC_METHOD *m = g ? EC_GROUP_method_of(g) : NULL;
const int warn = (m == EC_GFp_simple_method() ||
m == EC_GFp_mont_method() ||
m == EC_GFp_nist_method());
EC_KEY_free(key);
if (warn)
log_notice(LD_GENERAL, "We were built to run on a 64-bit CPU, with "
"OpenSSL 1.0.1 or later, but with a version of OpenSSL "
"that apparently lacks accelerated support for the NIST "
"P-224 and P-256 groups. Building openssl with such "
"support (using the enable-ec_nistp_64_gcc_128 option "
"when configuring it) would make ECDH about 5-10x "
"faster.");
}
#endif
tor_tls_allocate_tor_tls_object_ex_data_index();
tls_library_is_initialized = 1;