mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-28 14:23:30 +01:00
Refactor crypto_rsa to use pem module.
This cleans up a lot of junk from crypto_rsa_openssl, and will save us duplicated code in crypto_rsa_nss (when it exists). (Actually, it already exists, but I am going to use git rebase so that this commit precedes the creation of crypto_rsa_nss.)
This commit is contained in:
parent
9566ed6fd9
commit
b94e7de7db
@ -23,8 +23,12 @@
|
||||
|
||||
#include "lib/log/log.h"
|
||||
#include "lib/encoding/binascii.h"
|
||||
#include "lib/encoding/pem.h"
|
||||
|
||||
#include <string.h>
|
||||
#ifdef HAVE_SYS_STAT_H
|
||||
#include <sys/stat.h>
|
||||
#endif
|
||||
|
||||
/** Return the number of bytes added by padding method <b>padding</b>.
|
||||
*/
|
||||
@ -388,3 +392,252 @@ crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out)
|
||||
tor_free(buf);
|
||||
return rv;
|
||||
}
|
||||
|
||||
static const char RSA_PUBLIC_TAG[] = "RSA PUBLIC KEY";
|
||||
static const char RSA_PRIVATE_TAG[] = "RSA PRIVATE KEY";
|
||||
|
||||
/** PEM-encode the public key portion of <b>env</b> and write it to a
|
||||
* newly allocated string. On success, set *<b>dest</b> to the new
|
||||
* string, *<b>len</b> to the string's length, and return 0. On
|
||||
* failure, return -1.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_public_key_to_string(crypto_pk_t *env,
|
||||
char **dest, size_t *len)
|
||||
{
|
||||
size_t buflen = crypto_pk_keysize(env) * 3;
|
||||
char *buf = tor_malloc(buflen);
|
||||
char *result = NULL;
|
||||
size_t resultlen = 0;
|
||||
int rv = -1;
|
||||
|
||||
int n = crypto_pk_asn1_encode(env, buf, buflen);
|
||||
if (n < 0)
|
||||
goto done;
|
||||
|
||||
resultlen = pem_encoded_size(n, RSA_PUBLIC_TAG);
|
||||
result = tor_malloc(resultlen);
|
||||
if (pem_encode(result, resultlen,
|
||||
(const unsigned char *)buf, n, RSA_PUBLIC_TAG) < 0) {
|
||||
goto done;
|
||||
}
|
||||
|
||||
*dest = result;
|
||||
*len = resultlen;
|
||||
rv = 0;
|
||||
|
||||
done:
|
||||
if (rv < 0 && result) {
|
||||
memwipe(result, 0, resultlen);
|
||||
tor_free(result);
|
||||
}
|
||||
memwipe(buf, 0, buflen);
|
||||
tor_free(buf);
|
||||
return rv;
|
||||
}
|
||||
|
||||
/** PEM-encode the private key portion of <b>env</b> and write it to a
|
||||
* newly allocated string. On success, set *<b>dest</b> to the new
|
||||
* string, *<b>len</b> to the string's length, and return 0. On
|
||||
* failure, return -1.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_private_key_to_string(crypto_pk_t *env,
|
||||
char **dest, size_t *len)
|
||||
{
|
||||
size_t buflen = crypto_pk_keysize(env) * 16;
|
||||
char *buf = tor_malloc(buflen);
|
||||
char *result = NULL;
|
||||
size_t resultlen = 0;
|
||||
int rv = -1;
|
||||
|
||||
int n = crypto_pk_asn1_encode_private(env, buf, buflen);
|
||||
if (n < 0)
|
||||
goto done;
|
||||
|
||||
resultlen = pem_encoded_size(n, RSA_PRIVATE_TAG);
|
||||
result = tor_malloc(resultlen);
|
||||
if (pem_encode(result, resultlen,
|
||||
(const unsigned char *)buf, n, RSA_PRIVATE_TAG) < 0)
|
||||
goto done;
|
||||
|
||||
*dest = result;
|
||||
*len = resultlen;
|
||||
rv = 0;
|
||||
done:
|
||||
if (rv < 0 && result) {
|
||||
memwipe(result, 0, resultlen);
|
||||
tor_free(result);
|
||||
}
|
||||
memwipe(buf, 0, buflen);
|
||||
tor_free(buf);
|
||||
return rv;
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded public key from the first <b>len</b> characters of
|
||||
* <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
|
||||
* failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_public_key_from_string(crypto_pk_t *env,
|
||||
const char *src, size_t len)
|
||||
{
|
||||
if (len == (size_t)-1)
|
||||
len = strlen(src);
|
||||
|
||||
size_t buflen = len;
|
||||
uint8_t *buf = tor_malloc(buflen);
|
||||
int rv = -1;
|
||||
|
||||
int n = pem_decode(buf, buflen, src, len, RSA_PUBLIC_TAG);
|
||||
if (n < 0)
|
||||
goto done;
|
||||
|
||||
crypto_pk_t *pk = crypto_pk_asn1_decode((const char*)buf, n);
|
||||
if (! pk)
|
||||
goto done;
|
||||
|
||||
crypto_pk_assign_public(env, pk);
|
||||
crypto_pk_free(pk);
|
||||
rv = 0;
|
||||
|
||||
done:
|
||||
memwipe(buf, 0, buflen);
|
||||
tor_free(buf);
|
||||
return rv;
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
|
||||
* into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
|
||||
* the string is nul-terminated.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
|
||||
const char *s, ssize_t len)
|
||||
{
|
||||
if (len == -1)
|
||||
len = strlen(s);
|
||||
|
||||
size_t buflen = len;
|
||||
uint8_t *buf = tor_malloc(buflen);
|
||||
int rv = -1;
|
||||
|
||||
int n = pem_decode(buf, buflen, s, len, RSA_PRIVATE_TAG);
|
||||
if (n < 0) {
|
||||
goto done;
|
||||
}
|
||||
|
||||
crypto_pk_t *pk = crypto_pk_asn1_decode_private((const char *)buf, n);
|
||||
if (! pk)
|
||||
goto done;
|
||||
|
||||
crypto_pk_assign_private(env, pk);
|
||||
crypto_pk_free(pk);
|
||||
rv = 0;
|
||||
|
||||
done:
|
||||
memwipe(buf, 0, buflen);
|
||||
tor_free(buf);
|
||||
return rv;
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded private key from the file named by
|
||||
* <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
|
||||
const char *keyfile)
|
||||
{
|
||||
struct stat st;
|
||||
char *buf = read_file_to_str(keyfile, 0, &st);
|
||||
if (!buf)
|
||||
return -1;
|
||||
|
||||
int rv = crypto_pk_read_private_key_from_string(env, buf, st.st_size);
|
||||
memwipe(buf, 0, st.st_size);
|
||||
tor_free(buf);
|
||||
return rv;
|
||||
}
|
||||
|
||||
/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
|
||||
* PEM-encoded. Return 0 on success, -1 on failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
|
||||
const char *fname)
|
||||
{
|
||||
char *s = NULL;
|
||||
size_t n = 0;
|
||||
|
||||
if (crypto_pk_write_private_key_to_string(env, &s, &n) < 0)
|
||||
return -1;
|
||||
|
||||
int rv = write_bytes_to_file(fname, s, n, 0);
|
||||
memwipe(s, 0, n);
|
||||
tor_free(s);
|
||||
return rv;
|
||||
}
|
||||
|
||||
/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
|
||||
* Base64 encoding of the DER representation of the private key as a NUL
|
||||
* terminated string, and return it via <b>priv_out</b>. Return 0 on
|
||||
* success, -1 on failure.
|
||||
*
|
||||
* It is the caller's responsibility to sanitize and free the resulting buffer.
|
||||
*/
|
||||
int
|
||||
crypto_pk_base64_encode_private(const crypto_pk_t *pk, char **priv_out)
|
||||
{
|
||||
size_t buflen = crypto_pk_keysize(pk)*16;
|
||||
char *buf = tor_malloc(buflen);
|
||||
char *result = NULL;
|
||||
size_t reslen = 0;
|
||||
bool ok = false;
|
||||
|
||||
int n = crypto_pk_asn1_encode_private(pk, buf, buflen);
|
||||
|
||||
if (n < 0)
|
||||
goto done;
|
||||
|
||||
reslen = base64_encode_size(n, 0)+1;
|
||||
result = tor_malloc(reslen);
|
||||
if (base64_encode(result, reslen, buf, n, 0) < 0)
|
||||
goto done;
|
||||
|
||||
ok = true;
|
||||
|
||||
done:
|
||||
memwipe(buf, 0, buflen);
|
||||
tor_free(buf);
|
||||
if (result && ! ok) {
|
||||
memwipe(result, 0, reslen);
|
||||
tor_free(result);
|
||||
}
|
||||
*priv_out = result;
|
||||
return ok ? 0 : -1;
|
||||
}
|
||||
|
||||
/** Given a string containing the Base64 encoded DER representation of the
|
||||
* private key <b>str</b>, decode and return the result on success, or NULL
|
||||
* on failure.
|
||||
*/
|
||||
crypto_pk_t *
|
||||
crypto_pk_base64_decode_private(const char *str, size_t len)
|
||||
{
|
||||
crypto_pk_t *pk = NULL;
|
||||
|
||||
char *der = tor_malloc_zero(len + 1);
|
||||
int der_len = base64_decode(der, len, str, len);
|
||||
if (der_len <= 0) {
|
||||
log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
|
||||
goto out;
|
||||
}
|
||||
|
||||
pk = crypto_pk_asn1_decode_private(der, der_len);
|
||||
|
||||
out:
|
||||
memwipe(der, 0, len+1);
|
||||
tor_free(der);
|
||||
|
||||
return pk;
|
||||
}
|
||||
|
@ -93,6 +93,9 @@ int crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
|
||||
const char *from, size_t fromlen);
|
||||
int crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len);
|
||||
crypto_pk_t *crypto_pk_asn1_decode(const char *str, size_t len);
|
||||
int crypto_pk_asn1_encode_private(const crypto_pk_t *pk,
|
||||
char *dest, size_t dest_len);
|
||||
crypto_pk_t *crypto_pk_asn1_decode_private(const char *str, size_t len);
|
||||
int crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out,int add_space);
|
||||
int crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out);
|
||||
void crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in);
|
||||
@ -107,6 +110,14 @@ int crypto_pk_get_common_digests(crypto_pk_t *pk,
|
||||
int crypto_pk_base64_encode_private(const crypto_pk_t *pk, char **priv_out);
|
||||
crypto_pk_t *crypto_pk_base64_decode_private(const char *str, size_t len);
|
||||
|
||||
#ifdef TOR_UNIT_TESTS
|
||||
#ifdef ENABLE_NSS
|
||||
struct SECItemStr;
|
||||
STATIC int secitem_uint_cmp(const struct SECItemStr *a,
|
||||
const struct SECItemStr *b);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_OPENSSL
|
||||
/* Prototypes for private functions only used by tortls.c, crypto.c, and the
|
||||
* unit tests. */
|
||||
@ -118,8 +129,7 @@ MOCK_DECL(struct evp_pkey_st *, crypto_pk_get_openssl_evp_pkey_,(
|
||||
crypto_pk_t *env,int private));
|
||||
#endif
|
||||
|
||||
#ifdef TOR_UNIT_TESTS
|
||||
void crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src);
|
||||
#endif
|
||||
void crypto_pk_assign_public(crypto_pk_t *dest, const crypto_pk_t *src);
|
||||
void crypto_pk_assign_private(crypto_pk_t *dest, const crypto_pk_t *src);
|
||||
|
||||
#endif
|
||||
|
@ -183,216 +183,6 @@ crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** A PEM callback that always reports a failure to get a password */
|
||||
static int
|
||||
pem_no_password_cb(char *buf, int size, int rwflag, void *u)
|
||||
{
|
||||
(void)buf;
|
||||
(void)size;
|
||||
(void)rwflag;
|
||||
(void)u;
|
||||
return -1;
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
|
||||
* into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
|
||||
* the string is nul-terminated.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
|
||||
const char *s, ssize_t len)
|
||||
{
|
||||
BIO *b;
|
||||
|
||||
tor_assert(env);
|
||||
tor_assert(s);
|
||||
tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);
|
||||
|
||||
/* Create a read-only memory BIO, backed by the string 's' */
|
||||
b = BIO_new_mem_buf((char*)s, (int)len);
|
||||
if (!b)
|
||||
return -1;
|
||||
|
||||
if (env->key)
|
||||
RSA_free(env->key);
|
||||
|
||||
env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL);
|
||||
|
||||
BIO_free(b);
|
||||
|
||||
if (!env->key) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "Error parsing private key");
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded private key from the file named by
|
||||
* <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
|
||||
const char *keyfile)
|
||||
{
|
||||
char *contents;
|
||||
int r;
|
||||
|
||||
/* Read the file into a string. */
|
||||
contents = read_file_to_str(keyfile, 0, NULL);
|
||||
if (!contents) {
|
||||
log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Try to parse it. */
|
||||
r = crypto_pk_read_private_key_from_string(env, contents, -1);
|
||||
memwipe(contents, 0, strlen(contents));
|
||||
tor_free(contents);
|
||||
if (r)
|
||||
return -1; /* read_private_key_from_string already warned, so we don't.*/
|
||||
|
||||
/* Make sure it's valid. */
|
||||
if (crypto_pk_check_key(env) <= 0)
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
|
||||
* success, -1 on failure. */
|
||||
static int
|
||||
crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
|
||||
size_t *len, int is_public)
|
||||
{
|
||||
BUF_MEM *buf;
|
||||
BIO *b;
|
||||
int r;
|
||||
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
tor_assert(dest);
|
||||
|
||||
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
||||
if (!b)
|
||||
return -1;
|
||||
|
||||
/* Now you can treat b as if it were a file. Just use the
|
||||
* PEM_*_bio_* functions instead of the non-bio variants.
|
||||
*/
|
||||
if (is_public)
|
||||
r = PEM_write_bio_RSAPublicKey(b, env->key);
|
||||
else
|
||||
r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);
|
||||
|
||||
if (!r) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "writing RSA key to string");
|
||||
BIO_free(b);
|
||||
return -1;
|
||||
}
|
||||
|
||||
BIO_get_mem_ptr(b, &buf);
|
||||
|
||||
*dest = tor_malloc(buf->length+1);
|
||||
memcpy(*dest, buf->data, buf->length);
|
||||
(*dest)[buf->length] = 0; /* nul terminate it */
|
||||
*len = buf->length;
|
||||
|
||||
BIO_free(b);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** PEM-encode the public key portion of <b>env</b> and write it to a
|
||||
* newly allocated string. On success, set *<b>dest</b> to the new
|
||||
* string, *<b>len</b> to the string's length, and return 0. On
|
||||
* failure, return -1.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
|
||||
size_t *len)
|
||||
{
|
||||
return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
|
||||
}
|
||||
|
||||
/** PEM-encode the private key portion of <b>env</b> and write it to a
|
||||
* newly allocated string. On success, set *<b>dest</b> to the new
|
||||
* string, *<b>len</b> to the string's length, and return 0. On
|
||||
* failure, return -1.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
|
||||
size_t *len)
|
||||
{
|
||||
return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded public key from the first <b>len</b> characters of
|
||||
* <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
|
||||
* failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
|
||||
size_t len)
|
||||
{
|
||||
BIO *b;
|
||||
|
||||
tor_assert(env);
|
||||
tor_assert(src);
|
||||
tor_assert(len<INT_MAX);
|
||||
|
||||
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
||||
if (!b)
|
||||
return -1;
|
||||
|
||||
BIO_write(b, src, (int)len);
|
||||
|
||||
if (env->key)
|
||||
RSA_free(env->key);
|
||||
env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL);
|
||||
BIO_free(b);
|
||||
if (!env->key) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "reading public key from string");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
|
||||
* PEM-encoded. Return 0 on success, -1 on failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
|
||||
const char *fname)
|
||||
{
|
||||
BIO *bio;
|
||||
char *cp;
|
||||
long len;
|
||||
char *s;
|
||||
int r;
|
||||
|
||||
tor_assert(crypto_pk_key_is_private(env));
|
||||
|
||||
if (!(bio = BIO_new(BIO_s_mem())))
|
||||
return -1;
|
||||
if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
|
||||
== 0) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "writing private key");
|
||||
BIO_free(bio);
|
||||
return -1;
|
||||
}
|
||||
len = BIO_get_mem_data(bio, &cp);
|
||||
tor_assert(len >= 0);
|
||||
s = tor_malloc(len+1);
|
||||
memcpy(s, cp, len);
|
||||
s[len]='\0';
|
||||
r = write_str_to_file(fname, s, 0);
|
||||
BIO_free(bio);
|
||||
memwipe(s, 0, strlen(s));
|
||||
tor_free(s);
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Return true iff <b>env</b> has a valid key.
|
||||
*/
|
||||
int
|
||||
@ -512,11 +302,11 @@ crypto_pk_dup_key(crypto_pk_t *env)
|
||||
return env;
|
||||
}
|
||||
|
||||
#ifdef TOR_UNIT_TESTS
|
||||
/** For testing: replace dest with src. (Dest must have a refcount
|
||||
* of 1) */
|
||||
/** Replace dest with src (private key only). (Dest must have a refcount
|
||||
* of 1)
|
||||
*/
|
||||
void
|
||||
crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
|
||||
crypto_pk_assign_private(crypto_pk_t *dest, const crypto_pk_t *src)
|
||||
{
|
||||
tor_assert(dest);
|
||||
tor_assert(dest->refs == 1);
|
||||
@ -524,7 +314,19 @@ crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
|
||||
RSA_free(dest->key);
|
||||
dest->key = RSAPrivateKey_dup(src->key);
|
||||
}
|
||||
#endif /* defined(TOR_UNIT_TESTS) */
|
||||
|
||||
/** Replace dest with src (public key only). (Dest must have a refcount
|
||||
* of 1)
|
||||
*/
|
||||
void
|
||||
crypto_pk_assign_public(crypto_pk_t *dest, const crypto_pk_t *src)
|
||||
{
|
||||
tor_assert(dest);
|
||||
tor_assert(dest->refs == 1);
|
||||
tor_assert(src);
|
||||
RSA_free(dest->key);
|
||||
dest->key = RSAPublicKey_dup(src->key);
|
||||
}
|
||||
|
||||
/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
|
||||
* Returns NULL on failure. */
|
||||
@ -733,74 +535,48 @@ crypto_pk_asn1_decode(const char *str, size_t len)
|
||||
return crypto_new_pk_from_openssl_rsa_(rsa);
|
||||
}
|
||||
|
||||
/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
|
||||
* Base64 encoding of the DER representation of the private key as a NUL
|
||||
* terminated string, and return it via <b>priv_out</b>. Return 0 on
|
||||
* success, -1 on failure.
|
||||
*
|
||||
* It is the caller's responsibility to sanitize and free the resulting buffer.
|
||||
/** ASN.1-encode the private portion of <b>pk</b> into <b>dest</b>.
|
||||
* Return -1 on error, or the number of characters used on success.
|
||||
*/
|
||||
int
|
||||
crypto_pk_base64_encode_private(const crypto_pk_t *pk, char **priv_out)
|
||||
crypto_pk_asn1_encode_private(const crypto_pk_t *pk, char *dest,
|
||||
size_t dest_len)
|
||||
{
|
||||
unsigned char *der = NULL;
|
||||
int der_len;
|
||||
int ret = -1;
|
||||
int len;
|
||||
unsigned char *buf = NULL;
|
||||
|
||||
*priv_out = NULL;
|
||||
len = i2d_RSAPrivateKey(pk->key, &buf);
|
||||
if (len < 0 || buf == NULL)
|
||||
return -1;
|
||||
|
||||
der_len = i2d_RSAPrivateKey(pk->key, &der);
|
||||
if (der_len < 0 || der == NULL)
|
||||
return ret;
|
||||
|
||||
size_t priv_len = base64_encode_size(der_len, 0) + 1;
|
||||
char *priv = tor_malloc_zero(priv_len);
|
||||
if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
|
||||
*priv_out = priv;
|
||||
ret = 0;
|
||||
} else {
|
||||
tor_free(priv);
|
||||
if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
|
||||
OPENSSL_free(buf);
|
||||
return -1;
|
||||
}
|
||||
|
||||
memwipe(der, 0, der_len);
|
||||
OPENSSL_free(der);
|
||||
return ret;
|
||||
/* We don't encode directly into 'dest', because that would be illegal
|
||||
* type-punning. (C99 is smarter than me, C99 is smarter than me...)
|
||||
*/
|
||||
memcpy(dest,buf,len);
|
||||
OPENSSL_free(buf);
|
||||
return len;
|
||||
}
|
||||
|
||||
/** Given a string containing the Base64 encoded DER representation of the
|
||||
* private key <b>str</b>, decode and return the result on success, or NULL
|
||||
* on failure.
|
||||
/** Decode an ASN.1-encoded private key from <b>str</b>; return the result on
|
||||
* success and NULL on failure.
|
||||
*/
|
||||
crypto_pk_t *
|
||||
crypto_pk_base64_decode_private(const char *str, size_t len)
|
||||
crypto_pk_asn1_decode_private(const char *str, size_t len)
|
||||
{
|
||||
crypto_pk_t *pk = NULL;
|
||||
|
||||
char *der = tor_malloc_zero(len + 1);
|
||||
int der_len = base64_decode(der, len, str, len);
|
||||
if (der_len <= 0) {
|
||||
log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
|
||||
goto out;
|
||||
}
|
||||
|
||||
const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
|
||||
RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
|
||||
RSA *rsa;
|
||||
unsigned char *buf;
|
||||
const unsigned char *cp;
|
||||
cp = buf = tor_malloc(len);
|
||||
memcpy(buf,str,len);
|
||||
rsa = d2i_RSAPrivateKey(NULL, &cp, len);
|
||||
tor_free(buf);
|
||||
if (!rsa) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "decoding private key");
|
||||
goto out;
|
||||
crypto_openssl_log_errors(LOG_WARN,"decoding public key");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
pk = crypto_new_pk_from_openssl_rsa_(rsa);
|
||||
|
||||
/* Make sure it's valid. */
|
||||
if (crypto_pk_check_key(pk) <= 0) {
|
||||
crypto_pk_free(pk);
|
||||
pk = NULL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
out:
|
||||
memwipe(der, 0, len + 1);
|
||||
tor_free(der);
|
||||
return pk;
|
||||
return crypto_new_pk_from_openssl_rsa_(rsa);
|
||||
}
|
||||
|
@ -1519,7 +1519,8 @@ test_crypto_digests(void *arg)
|
||||
(void)arg;
|
||||
k = crypto_pk_new();
|
||||
tt_assert(k);
|
||||
r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
|
||||
r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3,
|
||||
strlen(AUTHORITY_SIGNKEY_3));
|
||||
tt_assert(!r);
|
||||
|
||||
r = crypto_pk_get_digest(k, digest);
|
||||
|
@ -490,7 +490,7 @@ crypto_pk_generate_key_with_bits__get_cached(crypto_pk_t *env, int bits)
|
||||
{
|
||||
if (bits == 1024 || bits == 2048) {
|
||||
crypto_pk_t *newkey = pk_generate_internal(bits);
|
||||
crypto_pk_assign_(env, newkey);
|
||||
crypto_pk_assign_private(env, newkey);
|
||||
crypto_pk_free(newkey);
|
||||
} else {
|
||||
return crypto_pk_generate_key_with_bits__real(env, bits);
|
||||
@ -544,4 +544,3 @@ init_pregenerated_keys(void)
|
||||
crypto_pk_generate_key_with_bits__get_cached);
|
||||
#endif /* defined(USE_PREGENERATED_RSA_KEYS) */
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user