mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-11 05:33:47 +01:00
rust: Remove mirrored PRNG implementation.
Once we need a PRNG, we'll likely want to change the dev-dependency on the rand crate to be a real dependency, and use rand::SmallRng as our PRNG.
This commit is contained in:
parent
49639b2826
commit
b5013e841c
12
src/rust/Cargo.lock
generated
12
src/rust/Cargo.lock
generated
@ -28,12 +28,24 @@ version = "0.0.1"
|
||||
dependencies = [
|
||||
"external 0.0.1",
|
||||
"libc 0.2.39 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"rand 0.5.0-pre.0",
|
||||
"rand_core 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"tor_allocate 0.0.1",
|
||||
"tor_log 0.1.0",
|
||||
"tor_util 0.0.1",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "rand"
|
||||
version = "0.5.0-pre.0"
|
||||
dependencies = [
|
||||
"rand_core 0.1.0",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "rand_core"
|
||||
version = "0.1.0"
|
||||
|
||||
[[package]]
|
||||
name = "rand_core"
|
||||
version = "0.1.0"
|
||||
|
@ -18,6 +18,9 @@ tor_allocate = { path = "../tor_allocate" }
|
||||
tor_log = { path = "../tor_log" }
|
||||
tor_util = { path = "../tor_util" }
|
||||
|
||||
[dev-dependencies]
|
||||
rand = { version = "=0.5.0-pre.0", default-features = false, path = "../../ext/rust/vendor/rand-8c5b0ac51d" }
|
||||
|
||||
[lib]
|
||||
name = "rand"
|
||||
path = "lib.rs"
|
||||
|
@ -3,6 +3,8 @@
|
||||
// See LICENSE for licensing information
|
||||
|
||||
// External dependencies
|
||||
#[cfg(test)]
|
||||
extern crate rand;
|
||||
extern crate rand_core;
|
||||
|
||||
// Internal dependencies
|
||||
@ -12,4 +14,3 @@ extern crate external;
|
||||
extern crate tor_log;
|
||||
|
||||
pub mod rng;
|
||||
pub mod prng;
|
||||
|
@ -1,184 +0,0 @@
|
||||
// Copyright (c) 2018, The Tor Project, Inc.
|
||||
// Copyright (c) 2018, isis agora lovecruft
|
||||
// See LICENSE for licensing information
|
||||
|
||||
//! Wrappers for Tor's pseudo-random number generator to provide implementations
|
||||
//! of `rand_core` traits.
|
||||
|
||||
use rand_core::impls;
|
||||
#[cfg(test)] use rand_core::CryptoRng;
|
||||
use rand_core::Error;
|
||||
use rand_core::RngCore;
|
||||
use rand_core::SeedableRng;
|
||||
|
||||
/// A cryptographically-/insecure/ psuedo-random number generator based
|
||||
/// on a mixed congruential generator.
|
||||
///
|
||||
/// Specifically the PRNG state, `X`, is mutated by the following
|
||||
/// discontinuous linear equation:
|
||||
///
|
||||
/// ```text
|
||||
/// X_{i} = (a X_{i-1} + b) mod n
|
||||
/// ```
|
||||
///
|
||||
/// where, in our case, we reuse the same parameters as OpenBSD and glibc,
|
||||
/// `a=1103515245`, `b=12345`, and `n=2147483647`, which should produce a
|
||||
/// maximal period over the range `0..u32::MAX`.
|
||||
///
|
||||
/// # Note
|
||||
///
|
||||
/// We reimplement the C here, rather than wrapping it, as it's one line of
|
||||
/// pure-Rust code (meaning it can also trivially be used in Rust tests without
|
||||
/// running into potential linker issues), as opposed to a few lines of `unsafe`
|
||||
/// calls to C.
|
||||
///
|
||||
/// # Warning
|
||||
///
|
||||
/// This should hopefully go without saying, but this PRNG is completely
|
||||
/// insecure and should never be used for anything an adversary should be unable
|
||||
/// to predict.
|
||||
//
|
||||
// C_RUST_COUPLED: `tor_weak_rng_t` /src/common/util.c
|
||||
pub struct TorInsecurePrng {
|
||||
state: u32,
|
||||
}
|
||||
|
||||
impl SeedableRng for TorInsecurePrng {
|
||||
type Seed = [u8; 4];
|
||||
|
||||
/// Create a new PRNG from a random 32-bit seed.
|
||||
//
|
||||
// C_RUST_COUPLED: `tor_init_weak_random()` /src/common/util.c
|
||||
fn from_seed(seed: Self::Seed) -> Self {
|
||||
let mut combined: u32 = seed[0].to_le() as u32;
|
||||
|
||||
// Rather than using std::mem::transmute, we'll just bitwise-OR them
|
||||
// into each other.
|
||||
combined = (seed[1].to_le() as u32) << 8 | combined;
|
||||
combined = (seed[2].to_le() as u32) << 16 | combined;
|
||||
combined = (seed[2].to_le() as u32) << 24 | combined;
|
||||
|
||||
TorInsecurePrng{ state: (combined & 0x7fffffff).to_le() }
|
||||
}
|
||||
}
|
||||
|
||||
impl TorInsecurePrng {
|
||||
/// This is the equivalent function to `tor_weak_random()`.
|
||||
//
|
||||
// C_RUST_COUPLED: `tor_weak_random()` /src/common/util.c
|
||||
pub fn next_i32(&mut self) -> i32 {
|
||||
// The C code appears to purposefully overflow the 32-bit state integer.
|
||||
self.state = (self.state.wrapping_mul(1103515245).wrapping_add(12345) & 0x7fffffff).to_le();
|
||||
self.state as i32
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl RngCore for TorInsecurePrng {
|
||||
// C_RUST_COUPLED: `tor_weak_random()` /src/common/util.c
|
||||
fn next_u32(&mut self) -> u32 {
|
||||
let x: u32 = self.next_i32() as u32;
|
||||
let y: u32 = self.next_i32() as u32;
|
||||
|
||||
// We have to add two samples together due to modding 0x7fffffff
|
||||
x + y
|
||||
}
|
||||
|
||||
fn next_u64(&mut self) -> u64 {
|
||||
impls::next_u64_via_u32(self)
|
||||
}
|
||||
|
||||
fn fill_bytes(&mut self, dest: &mut [u8]) {
|
||||
impls::fill_bytes_via_u32(self, dest);
|
||||
}
|
||||
|
||||
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
|
||||
Ok(self.fill_bytes(dest))
|
||||
}
|
||||
}
|
||||
|
||||
/// If we're running tests, it's fine to pretend this PRNG is cryptographically
|
||||
/// secure. (This allows us to test which require an implementation of
|
||||
/// `CryptoRng` without actually initialising all the OpenSSL C code.)
|
||||
#[cfg(test)]
|
||||
impl CryptoRng for TorInsecurePrng {}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn next_u32_shouldnt_return_same_number_twice_in_a_row() {
|
||||
// This test will fail 1 out of 2^{64} times (5.42 e-20), but the
|
||||
// probability of a particle radiating off a star and hitting your RAM
|
||||
// is roughly 1.4 e-15 per byte of RAM per second, so if this fails,
|
||||
// blame ~~Cosmic Rays~~ and not anyone named isis.
|
||||
let mut prng: TorInsecurePrng = TorInsecurePrng::from_seed([0xDE, 0xAD, 0x15, 0x15]);
|
||||
|
||||
let one: u32 = prng.next_u32();
|
||||
let two: u32 = prng.next_u32();
|
||||
|
||||
assert!(one != two);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn next_u32_should_have_uniform_distribution_average() {
|
||||
let mut prng: TorInsecurePrng = TorInsecurePrng::from_seed([0xDE, 0xAD, 0x15, 0x15]);
|
||||
let mut accumulator: Vec<u32> = Vec::new();
|
||||
let n: u64 = 10_000;
|
||||
|
||||
for _ in 0 .. n as usize {
|
||||
accumulator.push(prng.next_u32());
|
||||
}
|
||||
let total: u64 = accumulator.iter().fold(0, |acc,&x| acc + (x as u64));
|
||||
let average = total / n;
|
||||
println!("average is {:?}", average);
|
||||
|
||||
assert!(average <= 0x7fffffff + 0xf00000);
|
||||
assert!(average >= 0x7fffffff - 0xf00000);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn next_u32_shouldnt_have_bit_bias() {
|
||||
// Since the modulus in the mixed congruential generator isn't a power
|
||||
// of two, the bits should not have any statistical bias.
|
||||
let mut prng: TorInsecurePrng = TorInsecurePrng::from_seed([0xDE, 0xAD, 0x15, 0x15]);
|
||||
let mut accumulator: Vec<u32> = Vec::new();
|
||||
let n: u64 = 10_000;
|
||||
|
||||
for _ in 0 .. n as usize {
|
||||
accumulator.push(prng.next_u32().count_ones());
|
||||
}
|
||||
let total: u64 = accumulator.iter().fold(0, |acc,&x| acc + (x as u64));
|
||||
let average = total / n;
|
||||
println!("average is {:?}", average);
|
||||
|
||||
assert!(average == 16);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn next_u64_shouldnt_return_same_number_twice_in_a_row() {
|
||||
// This test will fail 1 out of 2^{128} times (2.94 e-39), but the
|
||||
// probability of a particle radiating off a star and hitting your RAM
|
||||
// is roughly 1.4 e-15 per byte of RAM per second, so if this fails,
|
||||
// blame ~~Cosmic Rays~~ and not anyone named isis.
|
||||
let mut prng: TorInsecurePrng = TorInsecurePrng::from_seed([0xDE, 0xAD, 0x15, 0x15]);
|
||||
|
||||
let one: u64 = prng.next_u64();
|
||||
let two: u64 = prng.next_u64();
|
||||
|
||||
assert!(one != two);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn fill_bytes_shouldnt_leave_all_zeroes() {
|
||||
// Again, 1 in 256^8 (5.42 e-20) chances this fails.
|
||||
// ~~Cosmic Rays~~, I tell you.
|
||||
let mut prng: TorInsecurePrng = TorInsecurePrng::from_seed([0xDE, 0xAD, 0x15, 0x15]);
|
||||
let mut bytes: [u8; 8] = [0u8; 8];
|
||||
|
||||
prng.fill_bytes(&mut bytes);
|
||||
|
||||
assert!(bytes != [0u8; 8]);
|
||||
}
|
||||
}
|
@ -78,14 +78,10 @@ mod internal {
|
||||
}
|
||||
}
|
||||
|
||||
// For testing, we expose the pure-Rust implementation of a
|
||||
// cryptographically-insecure PRNG which mirrors the implementation of
|
||||
// `tor_weak_rng_t` in C.
|
||||
// For testing, we expose a pure-Rust implementation.
|
||||
#[cfg(test)]
|
||||
mod internal {
|
||||
use prng::TorInsecurePrng;
|
||||
|
||||
pub type TorRng = TorInsecurePrng;
|
||||
pub use rand::EntropyRng as TorRng;
|
||||
}
|
||||
|
||||
// Finally, expose the public functionality of whichever appropriate internal
|
||||
|
Loading…
Reference in New Issue
Block a user