Add reference implementation for ntor v3.

This commit is contained in:
Nick Mathewson 2021-08-26 12:07:09 -04:00
parent 088c0367a2
commit a36391f9c0

308
src/test/ntor_v3_ref.py Executable file
View File

@ -0,0 +1,308 @@
#!/usr/bin/python
import binascii
import hashlib
import os
import struct
import donna25519
from Crypto.Cipher import AES
from Crypto.Util import Counter
# Define basic wrappers.
DIGEST_LEN = 32
ENC_KEY_LEN = 32
PUB_KEY_LEN = 32
SEC_KEY_LEN = 32
IDENTITY_LEN = 32
def sha3_256(s):
d = hashlib.sha3_256(s).digest()
assert len(d) == DIGEST_LEN
return d
def shake_256(s):
# Note: In reality, you wouldn't want to generate more bytes than needed.
MAX_KEY_BYTES = 1024
return hashlib.shake_256(s).digest(MAX_KEY_BYTES)
def curve25519(pk, sk):
assert len(pk) == PUB_KEY_LEN
assert len(sk) == SEC_KEY_LEN
private = donna25519.PrivateKey.load(sk)
public = donna25519.PublicKey(pk)
return private.do_exchange(public)
def keygen():
private = donna25519.PrivateKey()
public = private.get_public()
return (private.private, public.public)
def aes256_ctr(k, s):
assert len(k) == ENC_KEY_LEN
cipher = AES.new(k, AES.MODE_CTR, counter=Counter.new(128, initial_value=0))
return cipher.encrypt(s)
# Byte-oriented helper. We use this for decoding keystreams and messages.
class ByteSeq:
def __init__(self, data):
self.data = data
def take(self, n):
assert n <= len(self.data)
result = self.data[:n]
self.data = self.data[n:]
return result
def exhausted(self):
return len(self.data) == 0
def remaining(self):
return len(self.data)
# Low-level functions
MAC_KEY_LEN = 32
MAC_LEN = DIGEST_LEN
hash_func = sha3_256
def encapsulate(s):
"""encapsulate `s` with a length prefix.
We use this whenever we need to avoid message ambiguities in
cryptographic inputs.
"""
assert len(s) <= 0xffffffff
header = b"\0\0\0\0" + struct.pack("!L", len(s))
assert len(header) == 8
return header + s
def h(s, tweak):
return hash_func(encapsulate(tweak) + s)
def mac(s, key, tweak):
return hash_func(encapsulate(tweak) + encapsulate(key) + s)
def kdf(s, tweak):
data = shake_256(encapsulate(tweak) + s)
return ByteSeq(data)
def enc(s, k):
return aes256_ctr(k, s)
# Tweaked wrappers
PROTOID = b"ntor3-curve25519-sha3_256-1"
T_KDF_PHASE1 = PROTOID + b":kdf_phase1"
T_MAC_PHASE1 = PROTOID + b":msg_mac"
T_KDF_FINAL = PROTOID + b":kdf_final"
T_KEY_SEED = PROTOID + b":key_seed"
T_VERIFY = PROTOID + b":verify"
T_AUTH = PROTOID + b":auth_final"
def kdf_phase1(s):
return kdf(s, T_KDF_PHASE1)
def kdf_final(s):
return kdf(s, T_KDF_FINAL)
def mac_phase1(s, key):
return mac(s, key, T_MAC_PHASE1)
def h_key_seed(s):
return h(s, T_KEY_SEED)
def h_verify(s):
return h(s, T_VERIFY)
def h_auth(s):
return h(s, T_AUTH)
# Handshake.
def client_phase1(msg, verification, B, ID):
assert len(B) == PUB_KEY_LEN
assert len(ID) == IDENTITY_LEN
(x,X) = keygen()
p(["x", "X"], locals())
p(["msg", "verification"], locals())
Bx = curve25519(B, x)
secret_input_phase1 = Bx + ID + X + B + PROTOID + encapsulate(verification)
phase1_keys = kdf_phase1(secret_input_phase1)
enc_key = phase1_keys.take(ENC_KEY_LEN)
mac_key = phase1_keys.take(MAC_KEY_LEN)
p(["enc_key", "mac_key"], locals())
msg_0 = ID + B + X + enc(msg, enc_key)
mac = mac_phase1(msg_0, mac_key)
p(["mac"], locals())
client_handshake = msg_0 + mac
state = dict(x=x, X=X, B=B, ID=ID, Bx=Bx, mac=mac, verification=verification)
p(["client_handshake"], locals())
return (client_handshake, state)
# server.
class Reject(Exception):
pass
def server_part1(cmsg, verification, b, B, ID):
assert len(B) == PUB_KEY_LEN
assert len(ID) == IDENTITY_LEN
assert len(b) == SEC_KEY_LEN
if len(cmsg) < (IDENTITY_LEN + PUB_KEY_LEN * 2 + MAC_LEN):
raise Reject()
mac_covered_portion = cmsg[0:-MAC_LEN]
cmsg = ByteSeq(cmsg)
cmsg_id = cmsg.take(IDENTITY_LEN)
cmsg_B = cmsg.take(PUB_KEY_LEN)
cmsg_X = cmsg.take(PUB_KEY_LEN)
cmsg_msg = cmsg.take(cmsg.remaining() - MAC_LEN)
cmsg_mac = cmsg.take(MAC_LEN)
assert cmsg.exhausted()
# XXXX for real purposes, you would use constant-time checks here
if cmsg_id != ID or cmsg_B != B:
raise Reject()
Xb = curve25519(cmsg_X, b)
secret_input_phase1 = Xb + ID + cmsg_X + B + PROTOID + encapsulate(verification)
phase1_keys = kdf_phase1(secret_input_phase1)
enc_key = phase1_keys.take(ENC_KEY_LEN)
mac_key = phase1_keys.take(MAC_KEY_LEN)
mac_received = mac_phase1(mac_covered_portion, mac_key)
if mac_received != cmsg_mac:
raise Reject()
client_msg = enc(cmsg_msg, enc_key)
state = dict(
b=b,
B=B,
X=cmsg_X,
mac_received=mac_received,
Xb=Xb,
ID=ID,
verification=verification)
return (client_msg, state)
def server_part2(state, server_msg):
X = state['X']
Xb = state['Xb']
B = state['B']
b = state['b']
ID = state['ID']
mac_received = state['mac_received']
verification = state['verification']
p(["server_msg"], locals())
(y,Y) = keygen()
p(["y", "Y"], locals())
Xy = curve25519(X, y)
secret_input = Xy + Xb + ID + B + X + Y + PROTOID + encapsulate(verification)
key_seed = h_key_seed(secret_input)
verify = h_verify(secret_input)
p(["key_seed", "verify"], locals())
keys = kdf_final(key_seed)
server_enc_key = keys.take(ENC_KEY_LEN)
p(["server_enc_key"], locals())
smsg_msg = enc(server_msg, server_enc_key)
auth_input = verify + ID + B + Y + X + mac_received + encapsulate(smsg_msg) + PROTOID + b"Server"
auth = h_auth(auth_input)
server_handshake = Y + auth + smsg_msg
p(["auth", "server_handshake"], locals())
return (server_handshake, keys)
def client_phase2(state, smsg):
x = state['x']
X = state['X']
B = state['B']
ID = state['ID']
Bx = state['Bx']
mac_sent = state['mac']
verification = state['verification']
if len(smsg) < PUB_KEY_LEN + DIGEST_LEN:
raise Reject()
smsg = ByteSeq(smsg)
Y = smsg.take(PUB_KEY_LEN)
auth_received = smsg.take(DIGEST_LEN)
server_msg = smsg.take(smsg.remaining())
Yx = curve25519(Y,x)
secret_input = Yx + Bx + ID + B + X + Y + PROTOID + encapsulate(verification)
key_seed = h_key_seed(secret_input)
verify = h_verify(secret_input)
auth_input = verify + ID + B + Y + X + mac_sent + encapsulate(server_msg) + PROTOID + b"Server"
auth = h_auth(auth_input)
if auth != auth_received:
raise Reject()
keys = kdf_final(key_seed)
enc_key = keys.take(ENC_KEY_LEN)
server_msg_decrypted = enc(server_msg, enc_key)
return (keys, server_msg_decrypted)
def p(varnames, localvars):
for v in varnames:
label = v
val = localvars[label]
print('{} = "{}"'.format(label, binascii.b2a_hex(val).decode("ascii")))
def test():
(b,B) = keygen()
ID = os.urandom(IDENTITY_LEN)
p(["b", "B", "ID"], locals())
print("# ============")
(c_handshake, c_state) = client_phase1(b"hello world", b"xyzzy", B, ID)
print("# ============")
(c_msg_got, s_state) = server_part1(c_handshake, b"xyzzy", b, B, ID)
#print(repr(c_msg_got))
(s_handshake, s_keys) = server_part2(s_state, b"Hola Mundo")
print("# ============")
(c_keys, s_msg_got) = client_phase2(c_state, s_handshake)
#print(repr(s_msg_got))
c_keys_256 = c_keys.take(256)
p(["c_keys_256"], locals())
assert (c_keys_256 == s_keys.take(256))
if __name__ == '__main__':
test()