Finish documenting the functions in common

svn:r1758
This commit is contained in:
Nick Mathewson 2004-05-01 21:41:23 +00:00
parent 6fa2ded74c
commit 9a041591ac
3 changed files with 185 additions and 26 deletions

View File

@ -217,7 +217,8 @@ crypto_pk_env_t *crypto_new_pk_env(void)
return _crypto_new_pk_env_rsa(rsa); return _crypto_new_pk_env_rsa(rsa);
} }
/* /* Release a reference to an asymmetric key; when all the references
* are released, free the key.
*/ */
void crypto_free_pk_env(crypto_pk_env_t *env) void crypto_free_pk_env(crypto_pk_env_t *env)
{ {
@ -232,9 +233,9 @@ void crypto_free_pk_env(crypto_pk_env_t *env)
free(env); free(env);
} }
/* Create a new crypto_cipher_env_t for a given onion cipher type, key, /* Create a new symmetric cipher for a given key and encryption flag
* iv, and encryption flag (1=encrypt, 0=decrypt). Return the crypto object * (1=encrypt, 0=decrypt). Return the crypto object on success; NULL
* on success; NULL on failure. * on failure.
*/ */
crypto_cipher_env_t * crypto_cipher_env_t *
crypto_create_init_cipher(const char *key, int encrypt_mode) crypto_create_init_cipher(const char *key, int encrypt_mode)
@ -267,6 +268,8 @@ crypto_create_init_cipher(const char *key, int encrypt_mode)
return NULL; return NULL;
} }
/* Allocate and return a new symmetric cipher.
*/
crypto_cipher_env_t *crypto_new_cipher_env() crypto_cipher_env_t *crypto_new_cipher_env()
{ {
crypto_cipher_env_t *env; crypto_cipher_env_t *env;
@ -276,6 +279,8 @@ crypto_cipher_env_t *crypto_new_cipher_env()
return env; return env;
} }
/* Free a symmetric cipher.
*/
void crypto_free_cipher_env(crypto_cipher_env_t *env) void crypto_free_cipher_env(crypto_cipher_env_t *env)
{ {
tor_assert(env); tor_assert(env);
@ -286,6 +291,10 @@ void crypto_free_cipher_env(crypto_cipher_env_t *env)
} }
/* public key crypto */ /* public key crypto */
/* Generate a new public/private keypair in 'env'. Return 0 on
* success, -1 on failure.
*/
int crypto_pk_generate_key(crypto_pk_env_t *env) int crypto_pk_generate_key(crypto_pk_env_t *env)
{ {
tor_assert(env); tor_assert(env);
@ -301,6 +310,8 @@ int crypto_pk_generate_key(crypto_pk_env_t *env)
return 0; return 0;
} }
/* Read a PEM-encoded private key from 'src' into 'env'.
*/
static int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env, static int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env,
FILE *src) FILE *src)
{ {
@ -317,6 +328,9 @@ static int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env,
return 0; return 0;
} }
/* Read a PEM-encoded private key from the file named by 'keyfile' into 'env'.
* Return 0 on success, -1 on failure.
*/
int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *keyfile) int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *keyfile)
{ {
FILE *f_pr; FILE *f_pr;
@ -347,6 +361,10 @@ int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *k
return 0; return 0;
} }
/* PEM-encode the public key portion of 'env' and write it to a newly
* allocated string. On success, set *dest to the new string, *len to
* the string's length, and return 0. On failure, return -1.
*/
int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int *len) { int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int *len) {
BUF_MEM *buf; BUF_MEM *buf;
BIO *b; BIO *b;
@ -376,6 +394,10 @@ int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int
return 0; return 0;
} }
/* Read a PEM-encoded public key from the first 'len' characters of
* 'src', and store the result in 'env'. Return 0 on success, -1 on
* failure.
*/
int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src, int len) { int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src, int len) {
BIO *b; BIO *b;
@ -397,6 +419,9 @@ int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src,
return 0; return 0;
} }
/* Write the private key from 'env' into the file named by 'fname',
* PEM-encoded. Return 0 on success, -1 on failure.
*/
int int
crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env, crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env,
const char *fname) const char *fname)
@ -427,6 +452,8 @@ crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env,
return r; return r;
} }
/* Return true iff env has a good key.
*/
int crypto_pk_check_key(crypto_pk_env_t *env) int crypto_pk_check_key(crypto_pk_env_t *env)
{ {
int r; int r;
@ -438,6 +465,9 @@ int crypto_pk_check_key(crypto_pk_env_t *env)
return r; return r;
} }
/* Compare the public-key components of a and b. Return -1 if a<b, 0
* if a==b, and 1 if a>b.
*/
int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) { int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) {
int result; int result;
@ -455,7 +485,7 @@ int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) {
return BN_cmp((a->key)->e, (b->key)->e); return BN_cmp((a->key)->e, (b->key)->e);
} }
/* return the size of the public key modulus in 'env', in bytes. */ /* Return the size of the public key modulus in 'env', in bytes. */
int crypto_pk_keysize(crypto_pk_env_t *env) int crypto_pk_keysize(crypto_pk_env_t *env)
{ {
tor_assert(env && env->key); tor_assert(env && env->key);
@ -463,6 +493,8 @@ int crypto_pk_keysize(crypto_pk_env_t *env)
return RSA_size(env->key); return RSA_size(env->key);
} }
/* Increase the reference count of 'env'.
*/
crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) { crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) {
tor_assert(env && env->key); tor_assert(env && env->key);
@ -470,6 +502,11 @@ crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) {
return env; return env;
} }
/* Encrypt 'fromlen' bytes from 'from' with the public key in 'env',
* using the padding method 'padding'. On success, write the result
* to 'to', and return the number of bytes written. On failure,
* return -1.
*/
int crypto_pk_public_encrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding) int crypto_pk_public_encrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding)
{ {
int r; int r;
@ -477,11 +514,18 @@ int crypto_pk_public_encrypt(crypto_pk_env_t *env, const unsigned char *from, in
r = RSA_public_encrypt(fromlen, (unsigned char*)from, to, env->key, r = RSA_public_encrypt(fromlen, (unsigned char*)from, to, env->key,
crypto_get_rsa_padding(padding)); crypto_get_rsa_padding(padding));
if (r<0) if (r<0) {
crypto_log_errors(LOG_WARN, "performing RSA encryption"); crypto_log_errors(LOG_WARN, "performing RSA encryption");
return -1;
}
return r; return r;
} }
/* Decrypt 'fromlen' bytes from 'from' with the private key in 'env',
* using the padding method 'padding'. On success, write the result
* to 'to', and return the number of bytes written. On failure,
* return -1.
*/
int crypto_pk_private_decrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding) int crypto_pk_private_decrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding)
{ {
int r; int r;
@ -492,11 +536,18 @@ int crypto_pk_private_decrypt(crypto_pk_env_t *env, const unsigned char *from, i
r = RSA_private_decrypt(fromlen, (unsigned char*)from, to, env->key, r = RSA_private_decrypt(fromlen, (unsigned char*)from, to, env->key,
crypto_get_rsa_padding(padding)); crypto_get_rsa_padding(padding));
if (r<0) if (r<0) {
crypto_log_errors(LOG_WARN, "performing RSA decryption"); crypto_log_errors(LOG_WARN, "performing RSA decryption");
return -1;
}
return r; return r;
} }
/* Check a 'fromlen' bytes signature from 'from' with the public key
* in 'env', using PKCS1 padding. On success, write the signed data
* to 'to', and return the number of bytes written. On failure,
* return -1.
*/
int crypto_pk_public_checksig(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to) int crypto_pk_public_checksig(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
{ {
int r; int r;
@ -508,6 +559,11 @@ int crypto_pk_public_checksig(crypto_pk_env_t *env, const unsigned char *from, i
return r; return r;
} }
/* Sign 'fromlen' bytes of data from 'from' with the private key in
* 'env', using PKCS1 padding. On success, write the signature to
* 'to', and return the number of bytes written. On failure, return
* -1.
*/
int crypto_pk_private_sign(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to) int crypto_pk_private_sign(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
{ {
int r; int r;
@ -522,7 +578,9 @@ int crypto_pk_private_sign(crypto_pk_env_t *env, const unsigned char *from, int
return r; return r;
} }
/* Return 0 if sig is a correct signature for SHA1(data). Else return -1. /* Check a siglen-byte long signature at 'sig' against 'datalen' bytes
* of data at 'data', using the public key in 'env'. Return 0 if 'sig'
* is a correct signature for SHA1(data). Else return -1.
*/ */
int crypto_pk_public_checksig_digest(crypto_pk_env_t *env, const unsigned char *data, int datalen, const unsigned char *sig, int siglen) int crypto_pk_public_checksig_digest(crypto_pk_env_t *env, const unsigned char *data, int datalen, const unsigned char *sig, int siglen)
{ {
@ -549,13 +607,15 @@ int crypto_pk_public_checksig_digest(crypto_pk_env_t *env, const unsigned char *
return 0; return 0;
} }
/* Fill 'to' with a signature of SHA1(from). /* Compute a SHA1 digest of 'fromlen' bytes of data stored at 'from';
* sign the data with the private key in 'env', and store it in 'to'.
* Return the number of bytes written on success, and -1 on failure.
*/ */
int crypto_pk_private_sign_digest(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to) int crypto_pk_private_sign_digest(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
{ {
char digest[DIGEST_LEN]; char digest[DIGEST_LEN];
if (crypto_digest(from,fromlen,digest)<0) if (crypto_digest(from,fromlen,digest)<0)
return 0; return -1;
return crypto_pk_private_sign(env,digest,DIGEST_LEN,to); return crypto_pk_private_sign(env,digest,DIGEST_LEN,to);
} }
@ -684,8 +744,8 @@ int crypto_pk_private_hybrid_decrypt(crypto_pk_env_t *env,
return -1; return -1;
} }
/* Encode the public portion of 'pk' into 'dest'. Return -1 on error, /* ASN.1-encode the public portion of 'pk' into 'dest'. Return -1 on
* or the number of characters used on success. * error, or the number of characters used on success.
*/ */
int crypto_pk_asn1_encode(crypto_pk_env_t *pk, char *dest, int dest_len) int crypto_pk_asn1_encode(crypto_pk_env_t *pk, char *dest, int dest_len)
{ {
@ -709,7 +769,8 @@ int crypto_pk_asn1_encode(crypto_pk_env_t *pk, char *dest, int dest_len)
return len; return len;
} }
/* Decode an ASN1-encoded public key from str. /* Decode an ASN.1-encoded public key from str; return the result on
* success and -1 on failure.
*/ */
crypto_pk_env_t *crypto_pk_asn1_decode(const char *str, int len) crypto_pk_env_t *crypto_pk_asn1_decode(const char *str, int len)
{ {
@ -789,6 +850,8 @@ crypto_pk_get_fingerprint(crypto_pk_env_t *pk, char *fp_out)
return 0; return 0;
} }
/* Return true iff 's' is in the correct format for a fingerprint.
*/
int int
crypto_pk_check_fingerprint_syntax(const char *s) crypto_pk_check_fingerprint_syntax(const char *s)
{ {
@ -805,6 +868,10 @@ crypto_pk_check_fingerprint_syntax(const char *s)
} }
/* symmetric crypto */ /* symmetric crypto */
/* Generate a new random key for the symmetric cipher in 'env'.
* Return 0 on success, -1 on failure. Does not initialize the cipher.
*/
int crypto_cipher_generate_key(crypto_cipher_env_t *env) int crypto_cipher_generate_key(crypto_cipher_env_t *env)
{ {
tor_assert(env); tor_assert(env);
@ -812,6 +879,9 @@ int crypto_cipher_generate_key(crypto_cipher_env_t *env)
return crypto_rand(CIPHER_KEY_LEN, env->key); return crypto_rand(CIPHER_KEY_LEN, env->key);
} }
/* Set the symmetric key for the cipehr in 'env' to CIPHER_KEY_LEN
* bytes from 'key'. Does not initialize the cipher.
*/
int crypto_cipher_set_key(crypto_cipher_env_t *env, const unsigned char *key) int crypto_cipher_set_key(crypto_cipher_env_t *env, const unsigned char *key)
{ {
tor_assert(env && key); tor_assert(env && key);
@ -824,11 +894,15 @@ int crypto_cipher_set_key(crypto_cipher_env_t *env, const unsigned char *key)
return 0; return 0;
} }
/* Return a pointer to the key set for the cipher in 'env'.
*/
const unsigned char *crypto_cipher_get_key(crypto_cipher_env_t *env) const unsigned char *crypto_cipher_get_key(crypto_cipher_env_t *env)
{ {
return env->key; return env->key;
} }
/* Initialize the cipher in 'env' for encryption.
*/
int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env) int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env)
{ {
tor_assert(env); tor_assert(env);
@ -837,6 +911,8 @@ int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env)
return 0; return 0;
} }
/* Initialize the cipher in 'env' for decryption.
*/
int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env) int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env)
{ {
tor_assert(env); tor_assert(env);
@ -845,6 +921,10 @@ int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env)
return 0; return 0;
} }
/* Encrypt 'fromlen' bytes from 'from' using the cipher 'env'; on
* success, store the result to 'to' and return 0. On failure, return
* -1.
*/
int crypto_cipher_encrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to) int crypto_cipher_encrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to)
{ {
tor_assert(env && env->cipher && from && fromlen && to); tor_assert(env && env->cipher && from && fromlen && to);
@ -853,6 +933,10 @@ int crypto_cipher_encrypt(crypto_cipher_env_t *env, const unsigned char *from, u
return 0; return 0;
} }
/* Decrypt 'fromlen' bytes from 'from' using the cipher 'env'; on
* success, store the result to 'to' and return 0. On failure, return
* -1.
*/
int crypto_cipher_decrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to) int crypto_cipher_decrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to)
{ {
tor_assert(env && from && to); tor_assert(env && from && to);
@ -861,12 +945,16 @@ int crypto_cipher_decrypt(crypto_cipher_env_t *env, const unsigned char *from, u
return 0; return 0;
} }
/* Move the position of the cipher stream backwards by 'delta' bytes.
*/
int int
crypto_cipher_rewind(crypto_cipher_env_t *env, long delta) crypto_cipher_rewind(crypto_cipher_env_t *env, long delta)
{ {
return crypto_cipher_advance(env, -delta); return crypto_cipher_advance(env, -delta);
} }
/* Move the position of the cipher stream forwards by 'delta' bytes.
*/
int int
crypto_cipher_advance(crypto_cipher_env_t *env, long delta) crypto_cipher_advance(crypto_cipher_env_t *env, long delta)
{ {
@ -875,6 +963,10 @@ crypto_cipher_advance(crypto_cipher_env_t *env, long delta)
} }
/* SHA-1 */ /* SHA-1 */
/* Compute the SHA1 digest of 'len' bytes in data stored in 'm'. Write the
* DIGEST_LEN byte result into 'digest'.
*/
int crypto_digest(const unsigned char *m, int len, unsigned char *digest) int crypto_digest(const unsigned char *m, int len, unsigned char *digest)
{ {
tor_assert(m && digest); tor_assert(m && digest);
@ -885,6 +977,8 @@ struct crypto_digest_env_t {
SHA_CTX d; SHA_CTX d;
}; };
/* Allocate and return a new digest object.
*/
crypto_digest_env_t * crypto_digest_env_t *
crypto_new_digest_env(void) crypto_new_digest_env(void)
{ {
@ -894,11 +988,15 @@ crypto_new_digest_env(void)
return r; return r;
} }
/* Deallocate a digest object.
*/
void void
crypto_free_digest_env(crypto_digest_env_t *digest) { crypto_free_digest_env(crypto_digest_env_t *digest) {
tor_free(digest); tor_free(digest);
} }
/* Add 'len' bytes from 'data' to the digest object.
*/
void void
crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data, crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data,
size_t len) size_t len)
@ -908,6 +1006,10 @@ crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data,
SHA1_Update(&digest->d, (void*)data, len); SHA1_Update(&digest->d, (void*)data, len);
} }
/* Compute the hash of the data that has been passed to the digest object;
* write the first out_len bytes of the result to 'out'. 'out_len' must be
* <= DIGEST_LEN.
*/
void crypto_digest_get_digest(crypto_digest_env_t *digest, void crypto_digest_get_digest(crypto_digest_env_t *digest,
char *out, size_t out_len) char *out, size_t out_len)
{ {
@ -918,6 +1020,8 @@ void crypto_digest_get_digest(crypto_digest_env_t *digest,
memcpy(out, r, out_len); memcpy(out, r, out_len);
} }
/* Allocate and return a new digest object with the same state as 'digest'
*/
crypto_digest_env_t * crypto_digest_env_t *
crypto_digest_dup(const crypto_digest_env_t *digest) crypto_digest_dup(const crypto_digest_env_t *digest)
{ {
@ -928,6 +1032,9 @@ crypto_digest_dup(const crypto_digest_env_t *digest)
return r; return r;
} }
/* Replace the state of the digest object 'into' with the state of the digest
* object 'from'.
*/
void void
crypto_digest_assign(crypto_digest_env_t *into, crypto_digest_assign(crypto_digest_env_t *into,
const crypto_digest_env_t *from) const crypto_digest_env_t *from)
@ -937,9 +1044,14 @@ crypto_digest_assign(crypto_digest_env_t *into,
} }
/* DH */ /* DH */
/* Shared P parameter for our DH key exchanged */
static BIGNUM *dh_param_p = NULL; static BIGNUM *dh_param_p = NULL;
/* Shared G parameter for our DH key exchanges */
static BIGNUM *dh_param_g = NULL; static BIGNUM *dh_param_g = NULL;
/* Initialize dh_param_p and dh_param_g if they are not already
* set. */
static void init_dh_param() { static void init_dh_param() {
BIGNUM *p, *g; BIGNUM *p, *g;
int r; int r;
@ -985,6 +1097,8 @@ static void init_dh_param() {
dh_param_g = g; dh_param_g = g;
} }
/* Allocate and return a new DH object for a key echange.
*/
crypto_dh_env_t *crypto_dh_new() crypto_dh_env_t *crypto_dh_new()
{ {
crypto_dh_env_t *res = NULL; crypto_dh_env_t *res = NULL;
@ -1011,11 +1125,18 @@ crypto_dh_env_t *crypto_dh_new()
if (res) free(res); if (res) free(res);
return NULL; return NULL;
} }
/* Return the length of the DH key in 'dh', in bytes.
*/
int crypto_dh_get_bytes(crypto_dh_env_t *dh) int crypto_dh_get_bytes(crypto_dh_env_t *dh)
{ {
tor_assert(dh); tor_assert(dh);
return DH_size(dh->dh); return DH_size(dh->dh);
} }
/* Generate <x,g^x> for our part of the key exchange. Return 0 on
* success, -1 on failure.
*/
int crypto_dh_generate_public(crypto_dh_env_t *dh) int crypto_dh_generate_public(crypto_dh_env_t *dh)
{ {
if (!DH_generate_key(dh->dh)) { if (!DH_generate_key(dh->dh)) {
@ -1024,6 +1145,11 @@ int crypto_dh_generate_public(crypto_dh_env_t *dh)
} }
return 0; return 0;
} }
/* Generate g^x as necessary, and write the g^x for the key exchange
* as a pubkey_len-byte value into 'pubkey'. Return 0 on success, -1
* on failure. pubkey_len must be >= DH_BYTES.
*/
int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len) int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len)
{ {
int bytes; int bytes;
@ -1046,6 +1172,15 @@ int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len)
#undef MIN #undef MIN
#define MIN(a,b) ((a)<(b)?(a):(b)) #define MIN(a,b) ((a)<(b)?(a):(b))
/* Given a DH key exchange object, and our peer's value of g^y (as a
* pubkey_len byte value in 'pubkey') generate 'secret_bytes_out'
* bytes of shared key material and write them to 'secret_out'.
*
* (We generate key material by computing
* SHA11( g^xy || "\x00" ) || SHA1( g^xy || "\x01" ) || ...
* where || is concatenation.)
*
*/
int crypto_dh_compute_secret(crypto_dh_env_t *dh, int crypto_dh_compute_secret(crypto_dh_env_t *dh,
const char *pubkey, int pubkey_len, const char *pubkey, int pubkey_len,
char *secret_out, int secret_bytes_out) char *secret_out, int secret_bytes_out)
@ -1081,6 +1216,8 @@ int crypto_dh_compute_secret(crypto_dh_env_t *dh,
tor_free(secret_tmp); tor_free(secret_tmp);
return secret_len; return secret_len;
} }
/* Free a DH key exchange object.
*/
void crypto_dh_free(crypto_dh_env_t *dh) void crypto_dh_free(crypto_dh_env_t *dh)
{ {
tor_assert(dh && dh->dh); tor_assert(dh && dh->dh);
@ -1089,9 +1226,13 @@ void crypto_dh_free(crypto_dh_env_t *dh)
} }
/* random numbers */ /* random numbers */
#ifdef MS_WINDOWS
/* Seed OpenSSL's random number generator with DIGEST_LEN bytes from the
* operating system.
*/
int crypto_seed_rng() int crypto_seed_rng()
{ {
#ifdef MS_WINDOWS
static int provider_set = 0; static int provider_set = 0;
static HCRYPTPROV provider; static HCRYPTPROV provider;
char buf[DIGEST_LEN+1]; char buf[DIGEST_LEN+1];
@ -1120,10 +1261,7 @@ int crypto_seed_rng()
* good measure. */ * good measure. */
RAND_screen(); RAND_screen();
return 0; return 0;
}
#else #else
int crypto_seed_rng()
{
static char *filenames[] = { static char *filenames[] = {
"/dev/srandom", "/dev/urandom", "/dev/random", NULL "/dev/srandom", "/dev/urandom", "/dev/random", NULL
}; };
@ -1147,9 +1285,12 @@ int crypto_seed_rng()
log_fn(LOG_WARN, "Cannot seed RNG -- no entropy source found."); log_fn(LOG_WARN, "Cannot seed RNG -- no entropy source found.");
return -1; return -1;
}
#endif #endif
}
/* Write n bytes of strong random data to 'to'. Return 0 on success, -1 on
* failure.
*/
int crypto_rand(unsigned int n, unsigned char *to) int crypto_rand(unsigned int n, unsigned char *to)
{ {
int r; int r;
@ -1157,9 +1298,12 @@ int crypto_rand(unsigned int n, unsigned char *to)
r = RAND_bytes(to, n); r = RAND_bytes(to, n);
if (r == 0) if (r == 0)
crypto_log_errors(LOG_WARN, "generating random data"); crypto_log_errors(LOG_WARN, "generating random data");
return (r != 1); return (r == 1) ? 0 : -1;
} }
/* Write n bytes of pseudorandom data to 'to'. Return 0 on success, -1
* on failure.
*/
void crypto_pseudo_rand(unsigned int n, unsigned char *to) void crypto_pseudo_rand(unsigned int n, unsigned char *to)
{ {
tor_assert(to); tor_assert(to);
@ -1170,7 +1314,8 @@ void crypto_pseudo_rand(unsigned int n, unsigned char *to)
} }
} }
/* return a pseudo random number between 0 and max-1 */ /* Return a pseudorandom integer, choosen uniformly from the values
* between 0 and max-1 */
int crypto_pseudo_rand_int(unsigned int max) { int crypto_pseudo_rand_int(unsigned int max) {
unsigned int val; unsigned int val;
unsigned int cutoff; unsigned int cutoff;
@ -1189,6 +1334,10 @@ int crypto_pseudo_rand_int(unsigned int max) {
} }
} }
/* Base-64 encode 'srclen' bytes of data from 'src'. Write the result
* into 'dest', if it will fit within 'destlen' bytes. Return the
* number of bytes written on success; -1 on failure.
*/
int int
base64_encode(char *dest, int destlen, const char *src, int srclen) base64_encode(char *dest, int destlen, const char *src, int srclen)
{ {
@ -1207,6 +1356,11 @@ base64_encode(char *dest, int destlen, const char *src, int srclen)
ret += len; ret += len;
return ret; return ret;
} }
/* Base-64 decode 'srclen' bytes of data from 'src'. Write the result
* into 'dest', if it will fit within 'destlen' bytes. Return the
* number of bytes written on success; -1 on failure.
*/
int int
base64_decode(char *dest, int destlen, const char *src, int srclen) base64_decode(char *dest, int destlen, const char *src, int srclen)
{ {
@ -1225,8 +1379,8 @@ base64_decode(char *dest, int destlen, const char *src, int srclen)
return ret; return ret;
} }
/* Implement base32 encoding as in rfc3548. Limitation: Requires that /* Implements base32 encoding as in rfc3548. Limitation: Requires
* srclen is a multiple of 5. * that srclen is a multiple of 5.
*/ */
int int
base32_encode(char *dest, int destlen, const char *src, int srclen) base32_encode(char *dest, int destlen, const char *src, int srclen)

View File

@ -26,7 +26,8 @@
/* Bytes added for PKCS1-OAEP padding. */ /* Bytes added for PKCS1-OAEP padding. */
#define PKCS1_OAEP_PADDING_OVERHEAD 42 #define PKCS1_OAEP_PADDING_OVERHEAD 42
/* Length of encoded public key fingerprints, including space and NUL. */ /* Length of encoded public key fingerprints, including space; but not
* including terminating NUL. */
#define FINGERPRINT_LEN 49 #define FINGERPRINT_LEN 49

View File

@ -724,7 +724,8 @@ void strmap_free(strmap_t *map, void (*free_val)(void*))
*/ */
/* Return a pointer to the first char of s that is not whitespace and /* Return a pointer to the first char of s that is not whitespace and
* not a comment. */ * not a comment, or to the terminating NUL if no such character exists.
*/
const char *eat_whitespace(const char *s) { const char *eat_whitespace(const char *s) {
tor_assert(s); tor_assert(s);
@ -741,14 +742,17 @@ const char *eat_whitespace(const char *s) {
return s; return s;
} }
/* Return a pointer to the first char of s that is not a space or a tab. */ /* Return a pointer to the first char of s that is not a space or a tab,
* or to the terminating NUL if no such character exists. */
const char *eat_whitespace_no_nl(const char *s) { const char *eat_whitespace_no_nl(const char *s) {
while(*s == ' ' || *s == '\t') while(*s == ' ' || *s == '\t')
++s; ++s;
return s; return s;
} }
/* Return a pointer to the first char of s that is whitespace or '#' or '\0 */ /* Return a pointer to the first char of s that is whitespace or '#',
* or to the terminating NUL if no such character exists. */
*/
const char *find_whitespace(const char *s) { const char *find_whitespace(const char *s) {
tor_assert(s); tor_assert(s);