mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2024-11-28 14:23:30 +01:00
Extract openssl RSA functionality into its own file.
This commit is contained in:
parent
e56f0c9d33
commit
752ffa2197
@ -21,33 +21,11 @@
|
||||
#include "lib/log/util_bug.h"
|
||||
#include "lib/fs/files.h"
|
||||
|
||||
DISABLE_GCC_WARNING(redundant-decls)
|
||||
|
||||
#include <openssl/err.h>
|
||||
#include <openssl/rsa.h>
|
||||
#include <openssl/pem.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/engine.h>
|
||||
#include <openssl/rand.h>
|
||||
#include <openssl/bn.h>
|
||||
#include <openssl/dh.h>
|
||||
#include <openssl/conf.h>
|
||||
#include <openssl/hmac.h>
|
||||
|
||||
ENABLE_GCC_WARNING(redundant-decls)
|
||||
|
||||
#include "lib/log/log.h"
|
||||
#include "lib/encoding/binascii.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
/** Declaration for crypto_pk_t structure. */
|
||||
struct crypto_pk_t
|
||||
{
|
||||
int refs; /**< reference count, so we don't have to copy keys */
|
||||
RSA *key; /**< The key itself */
|
||||
};
|
||||
|
||||
/** Return the number of bytes added by padding method <b>padding</b>.
|
||||
*/
|
||||
int
|
||||
@ -72,442 +50,6 @@ crypto_get_rsa_padding(int padding)
|
||||
}
|
||||
}
|
||||
|
||||
/** used internally: quicly validate a crypto_pk_t object as a private key.
|
||||
* Return 1 iff the public key is valid, 0 if obviously invalid.
|
||||
*/
|
||||
static int
|
||||
crypto_pk_private_ok(const crypto_pk_t *k)
|
||||
{
|
||||
#ifdef OPENSSL_1_1_API
|
||||
if (!k || !k->key)
|
||||
return 0;
|
||||
|
||||
const BIGNUM *p, *q;
|
||||
RSA_get0_factors(k->key, &p, &q);
|
||||
return p != NULL; /* XXX/yawning: Should we check q? */
|
||||
#else /* !(defined(OPENSSL_1_1_API)) */
|
||||
return k && k->key && k->key->p;
|
||||
#endif /* defined(OPENSSL_1_1_API) */
|
||||
}
|
||||
|
||||
/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
|
||||
crypto_pk_t *
|
||||
crypto_new_pk_from_rsa_(RSA *rsa)
|
||||
{
|
||||
crypto_pk_t *env;
|
||||
tor_assert(rsa);
|
||||
env = tor_malloc(sizeof(crypto_pk_t));
|
||||
env->refs = 1;
|
||||
env->key = rsa;
|
||||
return env;
|
||||
}
|
||||
|
||||
/** Helper, used by tor-gencert.c. Return the RSA from a
|
||||
* crypto_pk_t. */
|
||||
RSA *
|
||||
crypto_pk_get_rsa_(crypto_pk_t *env)
|
||||
{
|
||||
return env->key;
|
||||
}
|
||||
|
||||
/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff
|
||||
* private is set, include the private-key portion of the key. Return a valid
|
||||
* pointer on success, and NULL on failure. */
|
||||
MOCK_IMPL(EVP_PKEY *,
|
||||
crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private))
|
||||
{
|
||||
RSA *key = NULL;
|
||||
EVP_PKEY *pkey = NULL;
|
||||
tor_assert(env->key);
|
||||
if (private) {
|
||||
if (!(key = RSAPrivateKey_dup(env->key)))
|
||||
goto error;
|
||||
} else {
|
||||
if (!(key = RSAPublicKey_dup(env->key)))
|
||||
goto error;
|
||||
}
|
||||
if (!(pkey = EVP_PKEY_new()))
|
||||
goto error;
|
||||
if (!(EVP_PKEY_assign_RSA(pkey, key)))
|
||||
goto error;
|
||||
return pkey;
|
||||
error:
|
||||
if (pkey)
|
||||
EVP_PKEY_free(pkey);
|
||||
if (key)
|
||||
RSA_free(key);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/** Allocate and return storage for a public key. The key itself will not yet
|
||||
* be set.
|
||||
*/
|
||||
MOCK_IMPL(crypto_pk_t *,
|
||||
crypto_pk_new,(void))
|
||||
{
|
||||
RSA *rsa;
|
||||
|
||||
rsa = RSA_new();
|
||||
tor_assert(rsa);
|
||||
return crypto_new_pk_from_rsa_(rsa);
|
||||
}
|
||||
|
||||
/** Release a reference to an asymmetric key; when all the references
|
||||
* are released, free the key.
|
||||
*/
|
||||
void
|
||||
crypto_pk_free_(crypto_pk_t *env)
|
||||
{
|
||||
if (!env)
|
||||
return;
|
||||
|
||||
if (--env->refs > 0)
|
||||
return;
|
||||
tor_assert(env->refs == 0);
|
||||
|
||||
if (env->key)
|
||||
RSA_free(env->key);
|
||||
|
||||
tor_free(env);
|
||||
}
|
||||
|
||||
/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
|
||||
* Return 0 on success, -1 on failure.
|
||||
*/
|
||||
MOCK_IMPL(int,
|
||||
crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
|
||||
{
|
||||
tor_assert(env);
|
||||
|
||||
if (env->key) {
|
||||
RSA_free(env->key);
|
||||
env->key = NULL;
|
||||
}
|
||||
|
||||
{
|
||||
BIGNUM *e = BN_new();
|
||||
RSA *r = NULL;
|
||||
if (!e)
|
||||
goto done;
|
||||
if (! BN_set_word(e, 65537))
|
||||
goto done;
|
||||
r = RSA_new();
|
||||
if (!r)
|
||||
goto done;
|
||||
if (RSA_generate_key_ex(r, bits, e, NULL) == -1)
|
||||
goto done;
|
||||
|
||||
env->key = r;
|
||||
r = NULL;
|
||||
done:
|
||||
if (e)
|
||||
BN_clear_free(e);
|
||||
if (r)
|
||||
RSA_free(r);
|
||||
}
|
||||
|
||||
if (!env->key) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "generating RSA key");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** A PEM callback that always reports a failure to get a password */
|
||||
static int
|
||||
pem_no_password_cb(char *buf, int size, int rwflag, void *u)
|
||||
{
|
||||
(void)buf;
|
||||
(void)size;
|
||||
(void)rwflag;
|
||||
(void)u;
|
||||
return -1;
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
|
||||
* into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
|
||||
* the string is nul-terminated.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
|
||||
const char *s, ssize_t len)
|
||||
{
|
||||
BIO *b;
|
||||
|
||||
tor_assert(env);
|
||||
tor_assert(s);
|
||||
tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);
|
||||
|
||||
/* Create a read-only memory BIO, backed by the string 's' */
|
||||
b = BIO_new_mem_buf((char*)s, (int)len);
|
||||
if (!b)
|
||||
return -1;
|
||||
|
||||
if (env->key)
|
||||
RSA_free(env->key);
|
||||
|
||||
env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL);
|
||||
|
||||
BIO_free(b);
|
||||
|
||||
if (!env->key) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "Error parsing private key");
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded private key from the file named by
|
||||
* <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
|
||||
const char *keyfile)
|
||||
{
|
||||
char *contents;
|
||||
int r;
|
||||
|
||||
/* Read the file into a string. */
|
||||
contents = read_file_to_str(keyfile, 0, NULL);
|
||||
if (!contents) {
|
||||
log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Try to parse it. */
|
||||
r = crypto_pk_read_private_key_from_string(env, contents, -1);
|
||||
memwipe(contents, 0, strlen(contents));
|
||||
tor_free(contents);
|
||||
if (r)
|
||||
return -1; /* read_private_key_from_string already warned, so we don't.*/
|
||||
|
||||
/* Make sure it's valid. */
|
||||
if (crypto_pk_check_key(env) <= 0)
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
|
||||
* success, -1 on failure. */
|
||||
static int
|
||||
crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
|
||||
size_t *len, int is_public)
|
||||
{
|
||||
BUF_MEM *buf;
|
||||
BIO *b;
|
||||
int r;
|
||||
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
tor_assert(dest);
|
||||
|
||||
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
||||
if (!b)
|
||||
return -1;
|
||||
|
||||
/* Now you can treat b as if it were a file. Just use the
|
||||
* PEM_*_bio_* functions instead of the non-bio variants.
|
||||
*/
|
||||
if (is_public)
|
||||
r = PEM_write_bio_RSAPublicKey(b, env->key);
|
||||
else
|
||||
r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);
|
||||
|
||||
if (!r) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "writing RSA key to string");
|
||||
BIO_free(b);
|
||||
return -1;
|
||||
}
|
||||
|
||||
BIO_get_mem_ptr(b, &buf);
|
||||
|
||||
*dest = tor_malloc(buf->length+1);
|
||||
memcpy(*dest, buf->data, buf->length);
|
||||
(*dest)[buf->length] = 0; /* nul terminate it */
|
||||
*len = buf->length;
|
||||
|
||||
BIO_free(b);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** PEM-encode the public key portion of <b>env</b> and write it to a
|
||||
* newly allocated string. On success, set *<b>dest</b> to the new
|
||||
* string, *<b>len</b> to the string's length, and return 0. On
|
||||
* failure, return -1.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
|
||||
size_t *len)
|
||||
{
|
||||
return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
|
||||
}
|
||||
|
||||
/** PEM-encode the private key portion of <b>env</b> and write it to a
|
||||
* newly allocated string. On success, set *<b>dest</b> to the new
|
||||
* string, *<b>len</b> to the string's length, and return 0. On
|
||||
* failure, return -1.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
|
||||
size_t *len)
|
||||
{
|
||||
return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded public key from the first <b>len</b> characters of
|
||||
* <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
|
||||
* failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
|
||||
size_t len)
|
||||
{
|
||||
BIO *b;
|
||||
|
||||
tor_assert(env);
|
||||
tor_assert(src);
|
||||
tor_assert(len<INT_MAX);
|
||||
|
||||
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
||||
if (!b)
|
||||
return -1;
|
||||
|
||||
BIO_write(b, src, (int)len);
|
||||
|
||||
if (env->key)
|
||||
RSA_free(env->key);
|
||||
env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL);
|
||||
BIO_free(b);
|
||||
if (!env->key) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "reading public key from string");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
|
||||
* PEM-encoded. Return 0 on success, -1 on failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
|
||||
const char *fname)
|
||||
{
|
||||
BIO *bio;
|
||||
char *cp;
|
||||
long len;
|
||||
char *s;
|
||||
int r;
|
||||
|
||||
tor_assert(crypto_pk_private_ok(env));
|
||||
|
||||
if (!(bio = BIO_new(BIO_s_mem())))
|
||||
return -1;
|
||||
if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
|
||||
== 0) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "writing private key");
|
||||
BIO_free(bio);
|
||||
return -1;
|
||||
}
|
||||
len = BIO_get_mem_data(bio, &cp);
|
||||
tor_assert(len >= 0);
|
||||
s = tor_malloc(len+1);
|
||||
memcpy(s, cp, len);
|
||||
s[len]='\0';
|
||||
r = write_str_to_file(fname, s, 0);
|
||||
BIO_free(bio);
|
||||
memwipe(s, 0, strlen(s));
|
||||
tor_free(s);
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Return true iff <b>env</b> has a valid key.
|
||||
*/
|
||||
int
|
||||
crypto_pk_check_key(crypto_pk_t *env)
|
||||
{
|
||||
int r;
|
||||
tor_assert(env);
|
||||
|
||||
r = RSA_check_key(env->key);
|
||||
if (r <= 0)
|
||||
crypto_openssl_log_errors(LOG_WARN,"checking RSA key");
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Return true iff <b>key</b> contains the private-key portion of the RSA
|
||||
* key. */
|
||||
int
|
||||
crypto_pk_key_is_private(const crypto_pk_t *key)
|
||||
{
|
||||
tor_assert(key);
|
||||
return crypto_pk_private_ok(key);
|
||||
}
|
||||
|
||||
/** Return true iff <b>env</b> contains a public key whose public exponent
|
||||
* equals 65537.
|
||||
*/
|
||||
int
|
||||
crypto_pk_public_exponent_ok(crypto_pk_t *env)
|
||||
{
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
|
||||
const BIGNUM *e;
|
||||
|
||||
#ifdef OPENSSL_1_1_API
|
||||
const BIGNUM *n, *d;
|
||||
RSA_get0_key(env->key, &n, &e, &d);
|
||||
#else
|
||||
e = env->key->e;
|
||||
#endif /* defined(OPENSSL_1_1_API) */
|
||||
return BN_is_word(e, 65537);
|
||||
}
|
||||
|
||||
/** Compare the public-key components of a and b. Return less than 0
|
||||
* if a\<b, 0 if a==b, and greater than 0 if a\>b. A NULL key is
|
||||
* considered to be less than all non-NULL keys, and equal to itself.
|
||||
*
|
||||
* Note that this may leak information about the keys through timing.
|
||||
*/
|
||||
int
|
||||
crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
|
||||
{
|
||||
int result;
|
||||
char a_is_non_null = (a != NULL) && (a->key != NULL);
|
||||
char b_is_non_null = (b != NULL) && (b->key != NULL);
|
||||
char an_argument_is_null = !a_is_non_null | !b_is_non_null;
|
||||
|
||||
result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
|
||||
if (an_argument_is_null)
|
||||
return result;
|
||||
|
||||
const BIGNUM *a_n, *a_e;
|
||||
const BIGNUM *b_n, *b_e;
|
||||
|
||||
#ifdef OPENSSL_1_1_API
|
||||
const BIGNUM *a_d, *b_d;
|
||||
RSA_get0_key(a->key, &a_n, &a_e, &a_d);
|
||||
RSA_get0_key(b->key, &b_n, &b_e, &b_d);
|
||||
#else
|
||||
a_n = a->key->n;
|
||||
a_e = a->key->e;
|
||||
b_n = b->key->n;
|
||||
b_e = b->key->e;
|
||||
#endif /* defined(OPENSSL_1_1_API) */
|
||||
|
||||
tor_assert(a_n != NULL && a_e != NULL);
|
||||
tor_assert(b_n != NULL && b_e != NULL);
|
||||
|
||||
result = BN_cmp(a_n, b_n);
|
||||
if (result)
|
||||
return result;
|
||||
return BN_cmp(a_e, b_e);
|
||||
}
|
||||
|
||||
/** Compare the public-key components of a and b. Return non-zero iff
|
||||
* a==b. A NULL key is considered to be distinct from all non-NULL
|
||||
* keys, and equal to itself.
|
||||
@ -520,98 +62,6 @@ crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b)
|
||||
return (crypto_pk_cmp_keys(a, b) == 0);
|
||||
}
|
||||
|
||||
/** Return the size of the public key modulus in <b>env</b>, in bytes. */
|
||||
size_t
|
||||
crypto_pk_keysize(const crypto_pk_t *env)
|
||||
{
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
|
||||
return (size_t) RSA_size((RSA*)env->key);
|
||||
}
|
||||
|
||||
/** Return the size of the public key modulus of <b>env</b>, in bits. */
|
||||
int
|
||||
crypto_pk_num_bits(crypto_pk_t *env)
|
||||
{
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
|
||||
#ifdef OPENSSL_1_1_API
|
||||
/* It's so stupid that there's no other way to check that n is valid
|
||||
* before calling RSA_bits().
|
||||
*/
|
||||
const BIGNUM *n, *e, *d;
|
||||
RSA_get0_key(env->key, &n, &e, &d);
|
||||
tor_assert(n != NULL);
|
||||
|
||||
return RSA_bits(env->key);
|
||||
#else /* !(defined(OPENSSL_1_1_API)) */
|
||||
tor_assert(env->key->n);
|
||||
return BN_num_bits(env->key->n);
|
||||
#endif /* defined(OPENSSL_1_1_API) */
|
||||
}
|
||||
|
||||
/** Increase the reference count of <b>env</b>, and return it.
|
||||
*/
|
||||
crypto_pk_t *
|
||||
crypto_pk_dup_key(crypto_pk_t *env)
|
||||
{
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
|
||||
env->refs++;
|
||||
return env;
|
||||
}
|
||||
|
||||
#ifdef TOR_UNIT_TESTS
|
||||
/** For testing: replace dest with src. (Dest must have a refcount
|
||||
* of 1) */
|
||||
void
|
||||
crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
|
||||
{
|
||||
tor_assert(dest);
|
||||
tor_assert(dest->refs == 1);
|
||||
tor_assert(src);
|
||||
RSA_free(dest->key);
|
||||
dest->key = RSAPrivateKey_dup(src->key);
|
||||
}
|
||||
#endif /* defined(TOR_UNIT_TESTS) */
|
||||
|
||||
/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
|
||||
* Returns NULL on failure. */
|
||||
crypto_pk_t *
|
||||
crypto_pk_copy_full(crypto_pk_t *env)
|
||||
{
|
||||
RSA *new_key;
|
||||
int privatekey = 0;
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
|
||||
if (crypto_pk_private_ok(env)) {
|
||||
new_key = RSAPrivateKey_dup(env->key);
|
||||
privatekey = 1;
|
||||
} else {
|
||||
new_key = RSAPublicKey_dup(env->key);
|
||||
}
|
||||
if (!new_key) {
|
||||
/* LCOV_EXCL_START
|
||||
*
|
||||
* We can't cause RSA*Key_dup() to fail, so we can't really test this.
|
||||
*/
|
||||
log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
|
||||
privatekey?"private":"public");
|
||||
crypto_openssl_log_errors(LOG_ERR,
|
||||
privatekey ? "Duplicating a private key" :
|
||||
"Duplicating a public key");
|
||||
tor_fragile_assert();
|
||||
return NULL;
|
||||
/* LCOV_EXCL_STOP */
|
||||
}
|
||||
|
||||
return crypto_new_pk_from_rsa_(new_key);
|
||||
}
|
||||
|
||||
/** Perform a hybrid (public/secret) encryption on <b>fromlen</b>
|
||||
* bytes of data from <b>from</b>, with padding type 'padding',
|
||||
* storing the results on <b>to</b>.
|
||||
@ -754,179 +204,6 @@ crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env,
|
||||
return -1;
|
||||
}
|
||||
|
||||
/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
|
||||
* in <b>env</b>, using the padding method <b>padding</b>. On success,
|
||||
* write the result to <b>to</b>, and return the number of bytes
|
||||
* written. On failure, return -1.
|
||||
*
|
||||
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
||||
* at least the length of the modulus of <b>env</b>.
|
||||
*/
|
||||
int
|
||||
crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
|
||||
const char *from, size_t fromlen, int padding)
|
||||
{
|
||||
int r;
|
||||
tor_assert(env);
|
||||
tor_assert(from);
|
||||
tor_assert(to);
|
||||
tor_assert(fromlen<INT_MAX);
|
||||
tor_assert(tolen >= crypto_pk_keysize(env));
|
||||
|
||||
r = RSA_public_encrypt((int)fromlen,
|
||||
(unsigned char*)from, (unsigned char*)to,
|
||||
env->key, crypto_get_rsa_padding(padding));
|
||||
if (r<0) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "performing RSA encryption");
|
||||
return -1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
|
||||
* in <b>env</b>, using the padding method <b>padding</b>. On success,
|
||||
* write the result to <b>to</b>, and return the number of bytes
|
||||
* written. On failure, return -1.
|
||||
*
|
||||
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
||||
* at least the length of the modulus of <b>env</b>.
|
||||
*/
|
||||
int
|
||||
crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
|
||||
size_t tolen,
|
||||
const char *from, size_t fromlen,
|
||||
int padding, int warnOnFailure)
|
||||
{
|
||||
int r;
|
||||
tor_assert(env);
|
||||
tor_assert(from);
|
||||
tor_assert(to);
|
||||
tor_assert(env->key);
|
||||
tor_assert(fromlen<INT_MAX);
|
||||
tor_assert(tolen >= crypto_pk_keysize(env));
|
||||
if (!crypto_pk_key_is_private(env))
|
||||
/* Not a private key */
|
||||
return -1;
|
||||
|
||||
r = RSA_private_decrypt((int)fromlen,
|
||||
(unsigned char*)from, (unsigned char*)to,
|
||||
env->key, crypto_get_rsa_padding(padding));
|
||||
|
||||
if (r<0) {
|
||||
crypto_openssl_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
|
||||
"performing RSA decryption");
|
||||
return -1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
|
||||
* public key in <b>env</b>, using PKCS1 padding. On success, write the
|
||||
* signed data to <b>to</b>, and return the number of bytes written.
|
||||
* On failure, return -1.
|
||||
*
|
||||
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
||||
* at least the length of the modulus of <b>env</b>.
|
||||
*/
|
||||
MOCK_IMPL(int,
|
||||
crypto_pk_public_checksig,(const crypto_pk_t *env, char *to,
|
||||
size_t tolen,
|
||||
const char *from, size_t fromlen))
|
||||
{
|
||||
int r;
|
||||
tor_assert(env);
|
||||
tor_assert(from);
|
||||
tor_assert(to);
|
||||
tor_assert(fromlen < INT_MAX);
|
||||
tor_assert(tolen >= crypto_pk_keysize(env));
|
||||
r = RSA_public_decrypt((int)fromlen,
|
||||
(unsigned char*)from, (unsigned char*)to,
|
||||
env->key, RSA_PKCS1_PADDING);
|
||||
|
||||
if (r<0) {
|
||||
crypto_openssl_log_errors(LOG_INFO, "checking RSA signature");
|
||||
return -1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
|
||||
* <b>env</b>, using PKCS1 padding. On success, write the signature to
|
||||
* <b>to</b>, and return the number of bytes written. On failure, return
|
||||
* -1.
|
||||
*
|
||||
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
||||
* at least the length of the modulus of <b>env</b>.
|
||||
*/
|
||||
int
|
||||
crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
|
||||
const char *from, size_t fromlen)
|
||||
{
|
||||
int r;
|
||||
tor_assert(env);
|
||||
tor_assert(from);
|
||||
tor_assert(to);
|
||||
tor_assert(fromlen < INT_MAX);
|
||||
tor_assert(tolen >= crypto_pk_keysize(env));
|
||||
if (!crypto_pk_key_is_private(env))
|
||||
/* Not a private key */
|
||||
return -1;
|
||||
|
||||
r = RSA_private_encrypt((int)fromlen,
|
||||
(unsigned char*)from, (unsigned char*)to,
|
||||
(RSA*)env->key, RSA_PKCS1_PADDING);
|
||||
if (r<0) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "generating RSA signature");
|
||||
return -1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
|
||||
* Return -1 on error, or the number of characters used on success.
|
||||
*/
|
||||
int
|
||||
crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len)
|
||||
{
|
||||
int len;
|
||||
unsigned char *buf = NULL;
|
||||
|
||||
len = i2d_RSAPublicKey(pk->key, &buf);
|
||||
if (len < 0 || buf == NULL)
|
||||
return -1;
|
||||
|
||||
if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
|
||||
OPENSSL_free(buf);
|
||||
return -1;
|
||||
}
|
||||
/* We don't encode directly into 'dest', because that would be illegal
|
||||
* type-punning. (C99 is smarter than me, C99 is smarter than me...)
|
||||
*/
|
||||
memcpy(dest,buf,len);
|
||||
OPENSSL_free(buf);
|
||||
return len;
|
||||
}
|
||||
|
||||
/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
|
||||
* success and NULL on failure.
|
||||
*/
|
||||
crypto_pk_t *
|
||||
crypto_pk_asn1_decode(const char *str, size_t len)
|
||||
{
|
||||
RSA *rsa;
|
||||
unsigned char *buf;
|
||||
const unsigned char *cp;
|
||||
cp = buf = tor_malloc(len);
|
||||
memcpy(buf,str,len);
|
||||
rsa = d2i_RSAPublicKey(NULL, &cp, len);
|
||||
tor_free(buf);
|
||||
if (!rsa) {
|
||||
crypto_openssl_log_errors(LOG_WARN,"decoding public key");
|
||||
return NULL;
|
||||
}
|
||||
return crypto_new_pk_from_rsa_(rsa);
|
||||
}
|
||||
|
||||
/** Given a private or public key <b>pk</b>, put a fingerprint of the
|
||||
* public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
|
||||
* space). Return 0 on success, -1 on failure.
|
||||
@ -1111,75 +388,3 @@ crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out)
|
||||
tor_free(buf);
|
||||
return rv;
|
||||
}
|
||||
|
||||
/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
|
||||
* Base64 encoding of the DER representation of the private key as a NUL
|
||||
* terminated string, and return it via <b>priv_out</b>. Return 0 on
|
||||
* success, -1 on failure.
|
||||
*
|
||||
* It is the caller's responsibility to sanitize and free the resulting buffer.
|
||||
*/
|
||||
int
|
||||
crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out)
|
||||
{
|
||||
unsigned char *der = NULL;
|
||||
int der_len;
|
||||
int ret = -1;
|
||||
|
||||
*priv_out = NULL;
|
||||
|
||||
der_len = i2d_RSAPrivateKey(pk->key, &der);
|
||||
if (der_len < 0 || der == NULL)
|
||||
return ret;
|
||||
|
||||
size_t priv_len = base64_encode_size(der_len, 0) + 1;
|
||||
char *priv = tor_malloc_zero(priv_len);
|
||||
if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
|
||||
*priv_out = priv;
|
||||
ret = 0;
|
||||
} else {
|
||||
tor_free(priv);
|
||||
}
|
||||
|
||||
memwipe(der, 0, der_len);
|
||||
OPENSSL_free(der);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/** Given a string containing the Base64 encoded DER representation of the
|
||||
* private key <b>str</b>, decode and return the result on success, or NULL
|
||||
* on failure.
|
||||
*/
|
||||
crypto_pk_t *
|
||||
crypto_pk_base64_decode(const char *str, size_t len)
|
||||
{
|
||||
crypto_pk_t *pk = NULL;
|
||||
|
||||
char *der = tor_malloc_zero(len + 1);
|
||||
int der_len = base64_decode(der, len, str, len);
|
||||
if (der_len <= 0) {
|
||||
log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
|
||||
goto out;
|
||||
}
|
||||
|
||||
const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
|
||||
RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
|
||||
if (!rsa) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "decoding private key");
|
||||
goto out;
|
||||
}
|
||||
|
||||
pk = crypto_new_pk_from_rsa_(rsa);
|
||||
|
||||
/* Make sure it's valid. */
|
||||
if (crypto_pk_check_key(pk) <= 0) {
|
||||
crypto_pk_free(pk);
|
||||
pk = NULL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
out:
|
||||
memwipe(der, 0, len + 1);
|
||||
tor_free(der);
|
||||
return pk;
|
||||
}
|
||||
|
815
src/lib/crypt_ops/crypto_rsa_openssl.c
Normal file
815
src/lib/crypt_ops/crypto_rsa_openssl.c
Normal file
@ -0,0 +1,815 @@
|
||||
/* Copyright (c) 2001, Matej Pfajfar.
|
||||
* Copyright (c) 2001-2004, Roger Dingledine.
|
||||
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
||||
* Copyright (c) 2007-2018, The Tor Project, Inc. */
|
||||
/* See LICENSE for licensing information */
|
||||
|
||||
/**
|
||||
* \file crypto_rsa.c
|
||||
* \brief OpenSSL implementations of our RSA code.
|
||||
**/
|
||||
|
||||
#include "lib/crypt_ops/compat_openssl.h"
|
||||
#include "lib/crypt_ops/crypto_rsa.h"
|
||||
#include "lib/crypt_ops/crypto_util.h"
|
||||
#include "lib/ctime/di_ops.h"
|
||||
#include "lib/log/util_bug.h"
|
||||
#include "lib/fs/files.h"
|
||||
|
||||
DISABLE_GCC_WARNING(redundant-decls)
|
||||
|
||||
#include <openssl/err.h>
|
||||
#include <openssl/rsa.h>
|
||||
#include <openssl/pem.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/engine.h>
|
||||
#include <openssl/rand.h>
|
||||
#include <openssl/bn.h>
|
||||
#include <openssl/conf.h>
|
||||
|
||||
ENABLE_GCC_WARNING(redundant-decls)
|
||||
|
||||
#include "lib/log/log.h"
|
||||
#include "lib/encoding/binascii.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
/** Declaration for crypto_pk_t structure. */
|
||||
struct crypto_pk_t
|
||||
{
|
||||
int refs; /**< reference count, so we don't have to copy keys */
|
||||
RSA *key; /**< The key itself */
|
||||
};
|
||||
|
||||
/** used internally: quicly validate a crypto_pk_t object as a private key.
|
||||
* Return 1 iff the public key is valid, 0 if obviously invalid.
|
||||
*/
|
||||
static int
|
||||
crypto_pk_private_ok(const crypto_pk_t *k)
|
||||
{
|
||||
#ifdef OPENSSL_1_1_API
|
||||
if (!k || !k->key)
|
||||
return 0;
|
||||
|
||||
const BIGNUM *p, *q;
|
||||
RSA_get0_factors(k->key, &p, &q);
|
||||
return p != NULL; /* XXX/yawning: Should we check q? */
|
||||
#else /* !(defined(OPENSSL_1_1_API)) */
|
||||
return k && k->key && k->key->p;
|
||||
#endif /* defined(OPENSSL_1_1_API) */
|
||||
}
|
||||
|
||||
/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
|
||||
crypto_pk_t *
|
||||
crypto_new_pk_from_rsa_(RSA *rsa)
|
||||
{
|
||||
crypto_pk_t *env;
|
||||
tor_assert(rsa);
|
||||
env = tor_malloc(sizeof(crypto_pk_t));
|
||||
env->refs = 1;
|
||||
env->key = rsa;
|
||||
return env;
|
||||
}
|
||||
|
||||
/** Helper, used by tor-gencert.c. Return the RSA from a
|
||||
* crypto_pk_t. */
|
||||
RSA *
|
||||
crypto_pk_get_rsa_(crypto_pk_t *env)
|
||||
{
|
||||
return env->key;
|
||||
}
|
||||
|
||||
/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff
|
||||
* private is set, include the private-key portion of the key. Return a valid
|
||||
* pointer on success, and NULL on failure. */
|
||||
MOCK_IMPL(EVP_PKEY *,
|
||||
crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private))
|
||||
{
|
||||
RSA *key = NULL;
|
||||
EVP_PKEY *pkey = NULL;
|
||||
tor_assert(env->key);
|
||||
if (private) {
|
||||
if (!(key = RSAPrivateKey_dup(env->key)))
|
||||
goto error;
|
||||
} else {
|
||||
if (!(key = RSAPublicKey_dup(env->key)))
|
||||
goto error;
|
||||
}
|
||||
if (!(pkey = EVP_PKEY_new()))
|
||||
goto error;
|
||||
if (!(EVP_PKEY_assign_RSA(pkey, key)))
|
||||
goto error;
|
||||
return pkey;
|
||||
error:
|
||||
if (pkey)
|
||||
EVP_PKEY_free(pkey);
|
||||
if (key)
|
||||
RSA_free(key);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/** Allocate and return storage for a public key. The key itself will not yet
|
||||
* be set.
|
||||
*/
|
||||
MOCK_IMPL(crypto_pk_t *,
|
||||
crypto_pk_new,(void))
|
||||
{
|
||||
RSA *rsa;
|
||||
|
||||
rsa = RSA_new();
|
||||
tor_assert(rsa);
|
||||
return crypto_new_pk_from_rsa_(rsa);
|
||||
}
|
||||
|
||||
/** Release a reference to an asymmetric key; when all the references
|
||||
* are released, free the key.
|
||||
*/
|
||||
void
|
||||
crypto_pk_free_(crypto_pk_t *env)
|
||||
{
|
||||
if (!env)
|
||||
return;
|
||||
|
||||
if (--env->refs > 0)
|
||||
return;
|
||||
tor_assert(env->refs == 0);
|
||||
|
||||
if (env->key)
|
||||
RSA_free(env->key);
|
||||
|
||||
tor_free(env);
|
||||
}
|
||||
|
||||
/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
|
||||
* Return 0 on success, -1 on failure.
|
||||
*/
|
||||
MOCK_IMPL(int,
|
||||
crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
|
||||
{
|
||||
tor_assert(env);
|
||||
|
||||
if (env->key) {
|
||||
RSA_free(env->key);
|
||||
env->key = NULL;
|
||||
}
|
||||
|
||||
{
|
||||
BIGNUM *e = BN_new();
|
||||
RSA *r = NULL;
|
||||
if (!e)
|
||||
goto done;
|
||||
if (! BN_set_word(e, 65537))
|
||||
goto done;
|
||||
r = RSA_new();
|
||||
if (!r)
|
||||
goto done;
|
||||
if (RSA_generate_key_ex(r, bits, e, NULL) == -1)
|
||||
goto done;
|
||||
|
||||
env->key = r;
|
||||
r = NULL;
|
||||
done:
|
||||
if (e)
|
||||
BN_clear_free(e);
|
||||
if (r)
|
||||
RSA_free(r);
|
||||
}
|
||||
|
||||
if (!env->key) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "generating RSA key");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** A PEM callback that always reports a failure to get a password */
|
||||
static int
|
||||
pem_no_password_cb(char *buf, int size, int rwflag, void *u)
|
||||
{
|
||||
(void)buf;
|
||||
(void)size;
|
||||
(void)rwflag;
|
||||
(void)u;
|
||||
return -1;
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
|
||||
* into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
|
||||
* the string is nul-terminated.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
|
||||
const char *s, ssize_t len)
|
||||
{
|
||||
BIO *b;
|
||||
|
||||
tor_assert(env);
|
||||
tor_assert(s);
|
||||
tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);
|
||||
|
||||
/* Create a read-only memory BIO, backed by the string 's' */
|
||||
b = BIO_new_mem_buf((char*)s, (int)len);
|
||||
if (!b)
|
||||
return -1;
|
||||
|
||||
if (env->key)
|
||||
RSA_free(env->key);
|
||||
|
||||
env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL);
|
||||
|
||||
BIO_free(b);
|
||||
|
||||
if (!env->key) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "Error parsing private key");
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded private key from the file named by
|
||||
* <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
|
||||
const char *keyfile)
|
||||
{
|
||||
char *contents;
|
||||
int r;
|
||||
|
||||
/* Read the file into a string. */
|
||||
contents = read_file_to_str(keyfile, 0, NULL);
|
||||
if (!contents) {
|
||||
log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Try to parse it. */
|
||||
r = crypto_pk_read_private_key_from_string(env, contents, -1);
|
||||
memwipe(contents, 0, strlen(contents));
|
||||
tor_free(contents);
|
||||
if (r)
|
||||
return -1; /* read_private_key_from_string already warned, so we don't.*/
|
||||
|
||||
/* Make sure it's valid. */
|
||||
if (crypto_pk_check_key(env) <= 0)
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
|
||||
* success, -1 on failure. */
|
||||
static int
|
||||
crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
|
||||
size_t *len, int is_public)
|
||||
{
|
||||
BUF_MEM *buf;
|
||||
BIO *b;
|
||||
int r;
|
||||
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
tor_assert(dest);
|
||||
|
||||
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
||||
if (!b)
|
||||
return -1;
|
||||
|
||||
/* Now you can treat b as if it were a file. Just use the
|
||||
* PEM_*_bio_* functions instead of the non-bio variants.
|
||||
*/
|
||||
if (is_public)
|
||||
r = PEM_write_bio_RSAPublicKey(b, env->key);
|
||||
else
|
||||
r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);
|
||||
|
||||
if (!r) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "writing RSA key to string");
|
||||
BIO_free(b);
|
||||
return -1;
|
||||
}
|
||||
|
||||
BIO_get_mem_ptr(b, &buf);
|
||||
|
||||
*dest = tor_malloc(buf->length+1);
|
||||
memcpy(*dest, buf->data, buf->length);
|
||||
(*dest)[buf->length] = 0; /* nul terminate it */
|
||||
*len = buf->length;
|
||||
|
||||
BIO_free(b);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** PEM-encode the public key portion of <b>env</b> and write it to a
|
||||
* newly allocated string. On success, set *<b>dest</b> to the new
|
||||
* string, *<b>len</b> to the string's length, and return 0. On
|
||||
* failure, return -1.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
|
||||
size_t *len)
|
||||
{
|
||||
return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
|
||||
}
|
||||
|
||||
/** PEM-encode the private key portion of <b>env</b> and write it to a
|
||||
* newly allocated string. On success, set *<b>dest</b> to the new
|
||||
* string, *<b>len</b> to the string's length, and return 0. On
|
||||
* failure, return -1.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
|
||||
size_t *len)
|
||||
{
|
||||
return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
|
||||
}
|
||||
|
||||
/** Read a PEM-encoded public key from the first <b>len</b> characters of
|
||||
* <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
|
||||
* failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
|
||||
size_t len)
|
||||
{
|
||||
BIO *b;
|
||||
|
||||
tor_assert(env);
|
||||
tor_assert(src);
|
||||
tor_assert(len<INT_MAX);
|
||||
|
||||
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
||||
if (!b)
|
||||
return -1;
|
||||
|
||||
BIO_write(b, src, (int)len);
|
||||
|
||||
if (env->key)
|
||||
RSA_free(env->key);
|
||||
env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL);
|
||||
BIO_free(b);
|
||||
if (!env->key) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "reading public key from string");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
|
||||
* PEM-encoded. Return 0 on success, -1 on failure.
|
||||
*/
|
||||
int
|
||||
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
|
||||
const char *fname)
|
||||
{
|
||||
BIO *bio;
|
||||
char *cp;
|
||||
long len;
|
||||
char *s;
|
||||
int r;
|
||||
|
||||
tor_assert(crypto_pk_private_ok(env));
|
||||
|
||||
if (!(bio = BIO_new(BIO_s_mem())))
|
||||
return -1;
|
||||
if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
|
||||
== 0) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "writing private key");
|
||||
BIO_free(bio);
|
||||
return -1;
|
||||
}
|
||||
len = BIO_get_mem_data(bio, &cp);
|
||||
tor_assert(len >= 0);
|
||||
s = tor_malloc(len+1);
|
||||
memcpy(s, cp, len);
|
||||
s[len]='\0';
|
||||
r = write_str_to_file(fname, s, 0);
|
||||
BIO_free(bio);
|
||||
memwipe(s, 0, strlen(s));
|
||||
tor_free(s);
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Return true iff <b>env</b> has a valid key.
|
||||
*/
|
||||
int
|
||||
crypto_pk_check_key(crypto_pk_t *env)
|
||||
{
|
||||
int r;
|
||||
tor_assert(env);
|
||||
|
||||
r = RSA_check_key(env->key);
|
||||
if (r <= 0)
|
||||
crypto_openssl_log_errors(LOG_WARN,"checking RSA key");
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Return true iff <b>key</b> contains the private-key portion of the RSA
|
||||
* key. */
|
||||
int
|
||||
crypto_pk_key_is_private(const crypto_pk_t *key)
|
||||
{
|
||||
tor_assert(key);
|
||||
return crypto_pk_private_ok(key);
|
||||
}
|
||||
|
||||
/** Return true iff <b>env</b> contains a public key whose public exponent
|
||||
* equals 65537.
|
||||
*/
|
||||
int
|
||||
crypto_pk_public_exponent_ok(crypto_pk_t *env)
|
||||
{
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
|
||||
const BIGNUM *e;
|
||||
|
||||
#ifdef OPENSSL_1_1_API
|
||||
const BIGNUM *n, *d;
|
||||
RSA_get0_key(env->key, &n, &e, &d);
|
||||
#else
|
||||
e = env->key->e;
|
||||
#endif /* defined(OPENSSL_1_1_API) */
|
||||
return BN_is_word(e, 65537);
|
||||
}
|
||||
|
||||
/** Compare the public-key components of a and b. Return less than 0
|
||||
* if a\<b, 0 if a==b, and greater than 0 if a\>b. A NULL key is
|
||||
* considered to be less than all non-NULL keys, and equal to itself.
|
||||
*
|
||||
* Note that this may leak information about the keys through timing.
|
||||
*/
|
||||
int
|
||||
crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
|
||||
{
|
||||
int result;
|
||||
char a_is_non_null = (a != NULL) && (a->key != NULL);
|
||||
char b_is_non_null = (b != NULL) && (b->key != NULL);
|
||||
char an_argument_is_null = !a_is_non_null | !b_is_non_null;
|
||||
|
||||
result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
|
||||
if (an_argument_is_null)
|
||||
return result;
|
||||
|
||||
const BIGNUM *a_n, *a_e;
|
||||
const BIGNUM *b_n, *b_e;
|
||||
|
||||
#ifdef OPENSSL_1_1_API
|
||||
const BIGNUM *a_d, *b_d;
|
||||
RSA_get0_key(a->key, &a_n, &a_e, &a_d);
|
||||
RSA_get0_key(b->key, &b_n, &b_e, &b_d);
|
||||
#else
|
||||
a_n = a->key->n;
|
||||
a_e = a->key->e;
|
||||
b_n = b->key->n;
|
||||
b_e = b->key->e;
|
||||
#endif /* defined(OPENSSL_1_1_API) */
|
||||
|
||||
tor_assert(a_n != NULL && a_e != NULL);
|
||||
tor_assert(b_n != NULL && b_e != NULL);
|
||||
|
||||
result = BN_cmp(a_n, b_n);
|
||||
if (result)
|
||||
return result;
|
||||
return BN_cmp(a_e, b_e);
|
||||
}
|
||||
|
||||
/** Return the size of the public key modulus in <b>env</b>, in bytes. */
|
||||
size_t
|
||||
crypto_pk_keysize(const crypto_pk_t *env)
|
||||
{
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
|
||||
return (size_t) RSA_size((RSA*)env->key);
|
||||
}
|
||||
|
||||
/** Return the size of the public key modulus of <b>env</b>, in bits. */
|
||||
int
|
||||
crypto_pk_num_bits(crypto_pk_t *env)
|
||||
{
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
|
||||
#ifdef OPENSSL_1_1_API
|
||||
/* It's so stupid that there's no other way to check that n is valid
|
||||
* before calling RSA_bits().
|
||||
*/
|
||||
const BIGNUM *n, *e, *d;
|
||||
RSA_get0_key(env->key, &n, &e, &d);
|
||||
tor_assert(n != NULL);
|
||||
|
||||
return RSA_bits(env->key);
|
||||
#else /* !(defined(OPENSSL_1_1_API)) */
|
||||
tor_assert(env->key->n);
|
||||
return BN_num_bits(env->key->n);
|
||||
#endif /* defined(OPENSSL_1_1_API) */
|
||||
}
|
||||
|
||||
/** Increase the reference count of <b>env</b>, and return it.
|
||||
*/
|
||||
crypto_pk_t *
|
||||
crypto_pk_dup_key(crypto_pk_t *env)
|
||||
{
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
|
||||
env->refs++;
|
||||
return env;
|
||||
}
|
||||
|
||||
#ifdef TOR_UNIT_TESTS
|
||||
/** For testing: replace dest with src. (Dest must have a refcount
|
||||
* of 1) */
|
||||
void
|
||||
crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
|
||||
{
|
||||
tor_assert(dest);
|
||||
tor_assert(dest->refs == 1);
|
||||
tor_assert(src);
|
||||
RSA_free(dest->key);
|
||||
dest->key = RSAPrivateKey_dup(src->key);
|
||||
}
|
||||
#endif /* defined(TOR_UNIT_TESTS) */
|
||||
|
||||
/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
|
||||
* Returns NULL on failure. */
|
||||
crypto_pk_t *
|
||||
crypto_pk_copy_full(crypto_pk_t *env)
|
||||
{
|
||||
RSA *new_key;
|
||||
int privatekey = 0;
|
||||
tor_assert(env);
|
||||
tor_assert(env->key);
|
||||
|
||||
if (crypto_pk_private_ok(env)) {
|
||||
new_key = RSAPrivateKey_dup(env->key);
|
||||
privatekey = 1;
|
||||
} else {
|
||||
new_key = RSAPublicKey_dup(env->key);
|
||||
}
|
||||
if (!new_key) {
|
||||
/* LCOV_EXCL_START
|
||||
*
|
||||
* We can't cause RSA*Key_dup() to fail, so we can't really test this.
|
||||
*/
|
||||
log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
|
||||
privatekey?"private":"public");
|
||||
crypto_openssl_log_errors(LOG_ERR,
|
||||
privatekey ? "Duplicating a private key" :
|
||||
"Duplicating a public key");
|
||||
tor_fragile_assert();
|
||||
return NULL;
|
||||
/* LCOV_EXCL_STOP */
|
||||
}
|
||||
|
||||
return crypto_new_pk_from_rsa_(new_key);
|
||||
}
|
||||
|
||||
/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
|
||||
* in <b>env</b>, using the padding method <b>padding</b>. On success,
|
||||
* write the result to <b>to</b>, and return the number of bytes
|
||||
* written. On failure, return -1.
|
||||
*
|
||||
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
||||
* at least the length of the modulus of <b>env</b>.
|
||||
*/
|
||||
int
|
||||
crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
|
||||
const char *from, size_t fromlen, int padding)
|
||||
{
|
||||
int r;
|
||||
tor_assert(env);
|
||||
tor_assert(from);
|
||||
tor_assert(to);
|
||||
tor_assert(fromlen<INT_MAX);
|
||||
tor_assert(tolen >= crypto_pk_keysize(env));
|
||||
|
||||
r = RSA_public_encrypt((int)fromlen,
|
||||
(unsigned char*)from, (unsigned char*)to,
|
||||
env->key, crypto_get_rsa_padding(padding));
|
||||
if (r<0) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "performing RSA encryption");
|
||||
return -1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
|
||||
* in <b>env</b>, using the padding method <b>padding</b>. On success,
|
||||
* write the result to <b>to</b>, and return the number of bytes
|
||||
* written. On failure, return -1.
|
||||
*
|
||||
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
||||
* at least the length of the modulus of <b>env</b>.
|
||||
*/
|
||||
int
|
||||
crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
|
||||
size_t tolen,
|
||||
const char *from, size_t fromlen,
|
||||
int padding, int warnOnFailure)
|
||||
{
|
||||
int r;
|
||||
tor_assert(env);
|
||||
tor_assert(from);
|
||||
tor_assert(to);
|
||||
tor_assert(env->key);
|
||||
tor_assert(fromlen<INT_MAX);
|
||||
tor_assert(tolen >= crypto_pk_keysize(env));
|
||||
if (!crypto_pk_key_is_private(env))
|
||||
/* Not a private key */
|
||||
return -1;
|
||||
|
||||
r = RSA_private_decrypt((int)fromlen,
|
||||
(unsigned char*)from, (unsigned char*)to,
|
||||
env->key, crypto_get_rsa_padding(padding));
|
||||
|
||||
if (r<0) {
|
||||
crypto_openssl_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
|
||||
"performing RSA decryption");
|
||||
return -1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
|
||||
* public key in <b>env</b>, using PKCS1 padding. On success, write the
|
||||
* signed data to <b>to</b>, and return the number of bytes written.
|
||||
* On failure, return -1.
|
||||
*
|
||||
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
||||
* at least the length of the modulus of <b>env</b>.
|
||||
*/
|
||||
MOCK_IMPL(int,
|
||||
crypto_pk_public_checksig,(const crypto_pk_t *env, char *to,
|
||||
size_t tolen,
|
||||
const char *from, size_t fromlen))
|
||||
{
|
||||
int r;
|
||||
tor_assert(env);
|
||||
tor_assert(from);
|
||||
tor_assert(to);
|
||||
tor_assert(fromlen < INT_MAX);
|
||||
tor_assert(tolen >= crypto_pk_keysize(env));
|
||||
r = RSA_public_decrypt((int)fromlen,
|
||||
(unsigned char*)from, (unsigned char*)to,
|
||||
env->key, RSA_PKCS1_PADDING);
|
||||
|
||||
if (r<0) {
|
||||
crypto_openssl_log_errors(LOG_INFO, "checking RSA signature");
|
||||
return -1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
|
||||
* <b>env</b>, using PKCS1 padding. On success, write the signature to
|
||||
* <b>to</b>, and return the number of bytes written. On failure, return
|
||||
* -1.
|
||||
*
|
||||
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
||||
* at least the length of the modulus of <b>env</b>.
|
||||
*/
|
||||
int
|
||||
crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
|
||||
const char *from, size_t fromlen)
|
||||
{
|
||||
int r;
|
||||
tor_assert(env);
|
||||
tor_assert(from);
|
||||
tor_assert(to);
|
||||
tor_assert(fromlen < INT_MAX);
|
||||
tor_assert(tolen >= crypto_pk_keysize(env));
|
||||
if (!crypto_pk_key_is_private(env))
|
||||
/* Not a private key */
|
||||
return -1;
|
||||
|
||||
r = RSA_private_encrypt((int)fromlen,
|
||||
(unsigned char*)from, (unsigned char*)to,
|
||||
(RSA*)env->key, RSA_PKCS1_PADDING);
|
||||
if (r<0) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "generating RSA signature");
|
||||
return -1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
|
||||
* Return -1 on error, or the number of characters used on success.
|
||||
*/
|
||||
int
|
||||
crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len)
|
||||
{
|
||||
int len;
|
||||
unsigned char *buf = NULL;
|
||||
|
||||
len = i2d_RSAPublicKey(pk->key, &buf);
|
||||
if (len < 0 || buf == NULL)
|
||||
return -1;
|
||||
|
||||
if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
|
||||
OPENSSL_free(buf);
|
||||
return -1;
|
||||
}
|
||||
/* We don't encode directly into 'dest', because that would be illegal
|
||||
* type-punning. (C99 is smarter than me, C99 is smarter than me...)
|
||||
*/
|
||||
memcpy(dest,buf,len);
|
||||
OPENSSL_free(buf);
|
||||
return len;
|
||||
}
|
||||
|
||||
/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
|
||||
* success and NULL on failure.
|
||||
*/
|
||||
crypto_pk_t *
|
||||
crypto_pk_asn1_decode(const char *str, size_t len)
|
||||
{
|
||||
RSA *rsa;
|
||||
unsigned char *buf;
|
||||
const unsigned char *cp;
|
||||
cp = buf = tor_malloc(len);
|
||||
memcpy(buf,str,len);
|
||||
rsa = d2i_RSAPublicKey(NULL, &cp, len);
|
||||
tor_free(buf);
|
||||
if (!rsa) {
|
||||
crypto_openssl_log_errors(LOG_WARN,"decoding public key");
|
||||
return NULL;
|
||||
}
|
||||
return crypto_new_pk_from_rsa_(rsa);
|
||||
}
|
||||
|
||||
/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
|
||||
* Base64 encoding of the DER representation of the private key as a NUL
|
||||
* terminated string, and return it via <b>priv_out</b>. Return 0 on
|
||||
* success, -1 on failure.
|
||||
*
|
||||
* It is the caller's responsibility to sanitize and free the resulting buffer.
|
||||
*/
|
||||
int
|
||||
crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out)
|
||||
{
|
||||
unsigned char *der = NULL;
|
||||
int der_len;
|
||||
int ret = -1;
|
||||
|
||||
*priv_out = NULL;
|
||||
|
||||
der_len = i2d_RSAPrivateKey(pk->key, &der);
|
||||
if (der_len < 0 || der == NULL)
|
||||
return ret;
|
||||
|
||||
size_t priv_len = base64_encode_size(der_len, 0) + 1;
|
||||
char *priv = tor_malloc_zero(priv_len);
|
||||
if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
|
||||
*priv_out = priv;
|
||||
ret = 0;
|
||||
} else {
|
||||
tor_free(priv);
|
||||
}
|
||||
|
||||
memwipe(der, 0, der_len);
|
||||
OPENSSL_free(der);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/** Given a string containing the Base64 encoded DER representation of the
|
||||
* private key <b>str</b>, decode and return the result on success, or NULL
|
||||
* on failure.
|
||||
*/
|
||||
crypto_pk_t *
|
||||
crypto_pk_base64_decode(const char *str, size_t len)
|
||||
{
|
||||
crypto_pk_t *pk = NULL;
|
||||
|
||||
char *der = tor_malloc_zero(len + 1);
|
||||
int der_len = base64_decode(der, len, str, len);
|
||||
if (der_len <= 0) {
|
||||
log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
|
||||
goto out;
|
||||
}
|
||||
|
||||
const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
|
||||
RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
|
||||
if (!rsa) {
|
||||
crypto_openssl_log_errors(LOG_WARN, "decoding private key");
|
||||
goto out;
|
||||
}
|
||||
|
||||
pk = crypto_new_pk_from_rsa_(rsa);
|
||||
|
||||
/* Make sure it's valid. */
|
||||
if (crypto_pk_check_key(pk) <= 0) {
|
||||
crypto_pk_free(pk);
|
||||
pk = NULL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
out:
|
||||
memwipe(der, 0, len + 1);
|
||||
tor_free(der);
|
||||
return pk;
|
||||
}
|
@ -19,6 +19,7 @@ src_lib_libtor_crypt_ops_a_SOURCES = \
|
||||
src/lib/crypt_ops/crypto_pwbox.c \
|
||||
src/lib/crypt_ops/crypto_rand.c \
|
||||
src/lib/crypt_ops/crypto_rsa.c \
|
||||
src/lib/crypt_ops/crypto_rsa_openssl.c \
|
||||
src/lib/crypt_ops/crypto_s2k.c \
|
||||
src/lib/crypt_ops/crypto_util.c \
|
||||
src/lib/crypt_ops/digestset.c
|
||||
|
Loading…
Reference in New Issue
Block a user