fill in the reputability and incentives sections

svn:r3428
This commit is contained in:
Roger Dingledine 2005-01-26 05:29:08 +00:00
parent f677bfaa96
commit 1d68cbc224

View File

@ -169,29 +169,87 @@ seems overkill (and/or insecure) based on the threat model we've picked.
\section{Crossroads: Policy issues}
\label{sec:crossroads-policy}
\subsection{Tor and blacklists}
Many of the issues the Tor project needs to address are not just a
matter of system design or technology development. In particular, the
Tor project's \emph{image} with respect to its users and the rest of
the Internet impacts the security it can provide.
Takedowns and efnet abuse and wikipedia complaints and irc
networks.
As an example to motivate this section, some U.S.~Department of Enery
penetration testing engineers are tasked with compromising DoE computers
from the outside. They only have a limited number of ISPs from which to
launch their attacks, and they found that the defenders were recognizing
attacks because they came from the same IP space. These engineers wanted
to use Tor to hide their tracks. First, from a technical standpoint,
Tor does not support the variety of IP packets they would like to use in
such attacks (see Section \ref{subsec:ip-vs-tcp}). But aside from this,
we also decided that it would probably be poor precedent to encourage
such use -- even legal use that improves national security -- and managed
to dissuade them.
\subsection{Tor and file-sharing}
With this image issue in mind, here we discuss the Tor user base and
Tor's interaction with other services on the Internet.
Bittorrent and dmca. Should we add an IDS to autodetect protocols and
snipe them?
\subsection{Usability}
\subsection{Image and sustainability}
Usability: fc03 paper was great, except the lower latency you are the
less useful it seems it is.
A Tor gui, how jap's gui is nice but does not reflect the security
they provide.
Public perception, and thus advertising, is a security parameter.
\subsection{Image, usability, and sustainability}
Image: substantial non-infringing uses. Image is a security parameter,
since it impacts user base and perceived sustainability.
good uses are kept private, bad uses are publicized. not good.
Sustainability. Previous attempts have been commercial which we think
adds a lot of unnecessary complexity and accountability. Freedom didn't
collect enough money to pay its servers; JAP bandwidth is supported by
continued money, and they periodically ask what they will do when it
dries up.
good uses are kept private, bad uses are publicized. not good.
\subsection{Reputability}
Yet another factor in the safety of a given network is its reputability:
the perception of its social value based on its current users. If I'm
the only user of a system, it might be socially accepted, but I'm not
getting any anonymity. Add a thousand Communists, and I'm anonymous,
but everyone thinks I'm a Commie. Add a thousand random citizens (cancer
survivors, privacy enthusiasts, and so on) and now I'm hard to profile.
The more cancer survivors on Tor, the better for the human rights
activists. The more script kiddies, the worse for the normal users. Thus,
reputability is an anonymity issue for two reasons. First, it impacts
the sustainability of the network: a network that's always about to be
shut down has difficulty attracting and keeping users, so its anonymity
set suffers. Second, a disreputable network attracts the attention of
powerful attackers who may not mind revealing the identities of all the
users to uncover the few bad ones.
While people therefore have an incentive for the network to be used for
``more reputable'' activities than their own, there are still tradeoffs
involved when it comes to anonymity. To follow the above example, a
network used entirely by cancer survivors might welcome some Communists
onto the network, though of course they'd prefer a wider variety of users.
The impact of public perception on security is especially important
during the bootstrapping phase of the network, where the first few
widely publicized uses of the network can dictate the types of users it
attracts next.
\subsection{Tor and file-sharing}
Bittorrent and dmca. Should we add an IDS to autodetect protocols and
snipe them?
\subsection{Tor and blacklists}
Takedowns and efnet abuse and wikipedia complaints and irc
networks.
\subsection{Other}
Tor's scope: How much should Tor aim to do? Applications that leak
@ -287,24 +345,95 @@ attacks. Would be nice to have hot-swap services, but hard to design.
%\section{Crossroads: Scaling}
\section{Crossroads: Scaling}
%\label{sec:crossroads-scaling}
%P2P + anonymity issues:
Tor is running today with thousands of users, and the current design
can handle hundreds of servers and probably tens of thousands of users;
but it will certainly not scale to millions.
Scaling Tor involves three main challenges. First is safe server
discovery, both bootstrapping -- how a Tor client can robustly find an
initial server list -- and ongoing -- how a Tor client can learn about
a fair sample of honest servers and not let the adversary control his
circuits (see Section x). Second is detecting and handling the speed
and reliability of the variety of servers we must use if we want to
accept many servers (see Section y).
Since the speed and reliability of a circuit is limited by its worst link,
we must learn to track and predict performance. Finally, in order to get
a large set of servers in the first place, we must address incentives
for users to carry traffic for others (see Section incentives).
\subsection{Incentives}
Copy the page I wrote for the NSF proposal, and maybe extend
it if we're feeling smart.
There are three behaviors we need to encourage for each server: relaying
traffic; providing good throughput and reliability while doing it;
and allowing traffic to exit the network from that server.
\subsection{Usability}
We encourage these behaviors through \emph{indirect} incentives, that
is, designing the system and educating users in such a way that users
with certain goals will choose to relay traffic. In practice, the
main incentive for running a Tor server is social benefit: volunteers
altruistically donate their bandwidth and time. We also keep public
rankings of the throughput and reliability of servers, much like
seti@home. We further explain to users that they can get \emph{better
security} by operating a server, because they get plausible deniability
(indeed, they may not need to route their own traffic through Tor at all
-- blending directly with other traffic exiting Tor may be sufficient
protection for them), and because they can use their own Tor server
as entry or exit point and be confident it's not run by the adversary.
Finally, we can improve the usability and feature set of the software:
rate limiting support and easy packaging decrease the hassle of
maintaining a server, and our configurable exit policies allow each
operator to advertise a policy describing the hosts and ports to which
he feels comfortable connecting.
Usability: fc03 paper was great, except the lower latency you are the
less useful it seems it is.
A Tor gui, how jap's gui is nice but does not reflect the security
they provide.
Public perception, and thus advertising, is a security parameter.
Beyond these, however, there is also a need for \emph{direct} incentives:
providing payment or other resources in return for high-quality service.
Paying actual money is problematic: decentralized e-cash systems are
not yet practical, and a centralized collection system not only reduces
robustness, but also has failed in the past (the history of commercial
anonymizing networks is littered with failed attempts). A more promising
option is to use a tit-for-tat incentive scheme: provide better service
to nodes that have provided good service to you.
Peer-to-peer / practical issues:
Unfortunately, such an approach introduces new anonymity problems.
Does the incentive system enable the adversary to attract more traffic by
performing well? Typically a user who chooses evenly from all options is
most resistant to an adversary targetting him, but that approach prevents
us from handling heterogeneous servers \cite{casc-rep}.
When a server (call him Steve) performs well for Alice, does Steve gain
reputation with the entire system, or just with Alice? If the entire
system, how does Alice tell everybody about her experience in a way that
prevents her from lying about it yet still protects her identity? If
Steve's behavior only affects Alice's behavior, does this allow Steve to
selectively perform only for Alice, and then break her anonymity later
when somebody (presumably Alice) routes through his node?
These are difficult and open questions, yet choosing not to scale means
leaving most users to a less secure network or no anonymizing network
at all. We will start with a simplified approach to the tit-for-tat
incentive scheme based on two rules: (1) each node should measure the
service it receives from adjacent nodes, and provide service relative to
the received service, but (2) when a node is making decisions that affect
its own security (e.g. when building a circuit for its own application
connections), it should choose evenly from a sufficiently large set of
nodes that meet some minimum service threshold. This approach allows us
to discourage bad service without opening Alice up as much to attacks.
%XXX rewrite the above so it sounds less like a grant proposal and
%more like a "if somebody were to try to solve this, maybe this is a
%good first step".
%We should implement the above incentive scheme in the
%deployed Tor network, in conjunction with our plans to add the necessary
%associated scalability mechanisms. We will do experiments (simulated
%and/or real) to determine how much the incentive system improves
%efficiency over baseline, and also to determine how far we are from
%optimal efficiency (what we could get if we ignored the anonymity goals).
\subsection{Peer-to-peer / practical issues}
Network discovery, sybil, node admission, scaling. It seems that the code
will ship with something and that's our trust root. We could try to get