tor/src/common/container.c

634 lines
17 KiB
C
Raw Normal View History

/* Copyright 2003-2004 Roger Dingledine; Copyright 2004 Nick Mathewson */
/* See LICENSE for licensing information */
/* $Id$ */
const char container_c_id[] = "$Id$";
#include "compat.h"
#include "util.h"
#include "log.h"
#include "../or/tree.h"
#include "container.h"
#ifdef HAVE_CTYPE_H
#include <ctype.h>
#endif
#include <stdlib.h>
#include <string.h>
#include <assert.h>
/* =====
* smartlist_t: a simple resizeable array abstraction.
* ===== */
/* All newly allocated smartlists have this capacity.
*/
#define SMARTLIST_DEFAULT_CAPACITY 32
#ifndef FAST_SMARTLIST
struct smartlist_t {
/** <b>list</b> has enough capacity to store exactly <b>capacity</b> elements
* before it needs to be resized. Only the first <b>num_used</b> (\<=
* capacity) elements point to valid data.
*/
void **list;
int num_used;
int capacity;
};
#endif
/** Allocate and return an empty smartlist.
*/
smartlist_t *smartlist_create() {
smartlist_t *sl = tor_malloc(sizeof(smartlist_t));
sl->num_used = 0;
sl->capacity = SMARTLIST_DEFAULT_CAPACITY;
sl->list = tor_malloc(sizeof(void *) * sl->capacity);
return sl;
}
/** Deallocate a smartlist. Does not release storage associated with the
* list's elements.
*/
void smartlist_free(smartlist_t *sl) {
free(sl->list);
free(sl);
}
/** Change the capacity of the smartlist to <b>n</b>, so that we can grow
* the list up to <b>n</b> elements with no further reallocation or wasted
* space. If <b>n</b> is less than or equal to the number of elements
* currently in the list, reduce the list's capacity as much as
* possible without losing elements.
*/
void smartlist_set_capacity(smartlist_t *sl, int n) {
if (n < sl->num_used)
n = sl->num_used;
if (sl->capacity != n) {
sl->capacity = n;
sl->list = tor_realloc(sl->list, sizeof(void*)*sl->capacity);
}
}
/** Remove all elements from the list.
*/
void smartlist_clear(smartlist_t *sl) {
sl->num_used = 0;
}
/** Set the list's new length to <b>len</b> (which must be \<= the list's
* current size). Remove the last smartlist_len(sl)-len elements from the
* list.
*/
void smartlist_truncate(smartlist_t *sl, int len)
{
tor_assert(len <= sl->num_used);
sl->num_used = len;
}
/** Append element to the end of the list. */
void smartlist_add(smartlist_t *sl, void *element) {
if (sl->num_used >= sl->capacity) {
sl->capacity *= 2;
sl->list = tor_realloc(sl->list, sizeof(void*)*sl->capacity);
}
sl->list[sl->num_used++] = element;
}
/** Append each element from S2 to the end of S1. */
void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2)
{
SMARTLIST_FOREACH(s2, void *, element, smartlist_add(sl, element));
}
/** Remove all elements E from sl such that E==element. Preserve
* the order of any elements before E, but elements after E can be
* rearranged.
*/
void smartlist_remove(smartlist_t *sl, void *element) {
int i;
if (element == NULL)
return;
for (i=0; i < sl->num_used; i++)
if (sl->list[i] == element) {
sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
i--; /* so we process the new i'th element */
}
}
/** Return true iff some element E of sl has E==element.
*/
int smartlist_isin(const smartlist_t *sl, void *element) {
int i;
for (i=0; i < sl->num_used; i++)
if (sl->list[i] == element)
return 1;
return 0;
}
int smartlist_string_isin(const smartlist_t *sl, const char *element) {
int i;
for (i=0; i < sl->num_used; i++)
if (strcmp((const char*)sl->list[i],element)==0)
return 1;
return 0;
}
int smartlist_string_num_isin(const smartlist_t *sl, int num) {
char buf[16];
tor_snprintf(buf,sizeof(buf),"%d", num);
return smartlist_string_isin(sl, buf);
}
/** Return true iff some element E of sl2 has smartlist_isin(sl1,E).
*/
int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2) {
int i;
for (i=0; i < sl2->num_used; i++)
if (smartlist_isin(sl1, sl2->list[i]))
return 1;
return 0;
}
/** Remove every element E of sl1 such that !smartlist_isin(sl2,E).
* Does not preserve the order of sl1.
*/
void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2) {
int i;
for (i=0; i < sl1->num_used; i++)
if (!smartlist_isin(sl2, sl1->list[i])) {
sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */
i--; /* so we process the new i'th element */
}
}
/** Remove every element E of sl1 such that smartlist_isin(sl2,E).
* Does not preserve the order of sl1.
*/
void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2) {
int i;
for (i=0; i < sl2->num_used; i++)
smartlist_remove(sl1, sl2->list[i]);
}
#ifndef FAST_SMARTLIST
/** Return the <b>idx</b>th element of sl.
*/
void *smartlist_get(const smartlist_t *sl, int idx)
{
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(idx < sl->num_used);
return sl->list[idx];
}
2004-12-04 14:58:34 +01:00
/** Change the value of the <b>idx</b>th element of sl to <b>val</b>.
*/
void smartlist_set(smartlist_t *sl, int idx, void *val)
{
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(idx < sl->num_used);
sl->list[idx] = val;
}
/** Return the number of items in sl.
*/
int smartlist_len(const smartlist_t *sl)
{
return sl->num_used;
}
#endif
/** Remove the <b>idx</b>th element of sl; if idx is not the last
* element, swap the last element of sl into the <b>idx</b>th space.
* Return the old value of the <b>idx</b>th element.
*/
void smartlist_del(smartlist_t *sl, int idx)
{
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(idx < sl->num_used);
sl->list[idx] = sl->list[--sl->num_used];
}
/** Remove the <b>idx</b>th element of sl; if idx is not the last element,
* moving all subsequent elements back one space. Return the old value
* of the <b>idx</b>th element.
*/
void smartlist_del_keeporder(smartlist_t *sl, int idx)
{
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(idx < sl->num_used);
--sl->num_used;
if (idx < sl->num_used)
memmove(sl->list+idx, sl->list+idx+1, sizeof(void*)*(sl->num_used-idx));
}
/** Insert the value <b>val</b> as the new <b>idx</b>th element of
* <b>sl</b>, moving all items previously at <b>idx</b> or later
* forward one space.
*/
void smartlist_insert(smartlist_t *sl, int idx, void *val)
{
tor_assert(sl);
tor_assert(idx>=0);
tor_assert(idx <= sl->num_used);
if (idx == sl->num_used) {
smartlist_add(sl, val);
} else {
/* Ensure sufficient capacity */
if (sl->num_used >= sl->capacity) {
sl->capacity *= 2;
sl->list = tor_realloc(sl->list, sizeof(void*)*sl->capacity);
}
/* Move other elements away */
if (idx < sl->num_used)
memmove(sl->list + idx + 1, sl->list + idx,
sizeof(void*)*(sl->num_used-idx));
sl->num_used++;
sl->list[idx] = val;
}
}
/**
* Split a string <b>str</b> along all occurrences of <b>sep</b>,
* adding the split strings, in order, to <b>sl</b>. If
* <b>flags</b>&amp;SPLIT_SKIP_SPACE is true, remove initial and
* trailing space from each entry. If
* <b>flags</b>&amp;SPLIT_IGNORE_BLANK is true, remove any entries of
* length 0. If max>0, divide the string into no more than <b>max</b>
* pieces. If <b>sep</b> is NULL, split on any sequence of horizontal space.
*/
int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
int flags, int max)
{
const char *cp, *end, *next;
int n = 0;
tor_assert(sl);
tor_assert(str);
cp = str;
while (1) {
if (flags&SPLIT_SKIP_SPACE) {
while (TOR_ISSPACE(*cp)) ++cp;
}
if (max>0 && n == max-1) {
end = strchr(cp,'\0');
} else if (sep) {
end = strstr(cp,sep);
if (!end)
end = strchr(cp,'\0');
} else {
for (end = cp; *end && *end != '\t' && *end != ' '; ++end)
;
}
if (!*end) {
next = NULL;
} else if (sep) {
next = end+strlen(sep);
} else {
next = end+1;
while (*next == '\t' || *next == ' ')
++next;
}
if (flags&SPLIT_SKIP_SPACE) {
while (end > cp && TOR_ISSPACE(*(end-1)))
--end;
}
if (end != cp || !(flags&SPLIT_IGNORE_BLANK)) {
smartlist_add(sl, tor_strndup(cp, end-cp));
++n;
}
if (!next)
break;
cp = next;
}
return n;
}
/** Allocate and return a new string containing the concatenation of
* the elements of <b>sl</b>, in order, separated by <b>join</b>. If
* <b>terminate</b> is true, also terminate the string with <b>join</b>.
* If <b>len_out</b> is not NULL, set <b>len_out</b> to the length of
* the returned string. Requires that every element of <b>sl</b> is
* NUL-terminated string.
*/
char *smartlist_join_strings(smartlist_t *sl, const char *join,
int terminate, size_t *len_out)
{
return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out);
}
2004-12-07 16:37:35 +01:00
/** As smartlist_join_strings, but instead of separating/terminated with a
* NUL-terminated string <b>join</b>, uses the <b>join_len</b>-byte sequence
* at <b>join</b>. (Useful for generating a sequence of NUL-terminated
* strings.)
*/
char *smartlist_join_strings2(smartlist_t *sl, const char *join,
size_t join_len, int terminate, size_t *len_out)
{
int i;
size_t n = 0;
char *r = NULL, *dst, *src;
tor_assert(sl);
tor_assert(join);
join_len = strlen(join);
for (i = 0; i < sl->num_used; ++i) {
n += strlen(sl->list[i]);
n += join_len;
}
if (!terminate) n -= join_len;
dst = r = tor_malloc(n+1);
for (i = 0; i < sl->num_used; ) {
for (src = sl->list[i]; *src; )
*dst++ = *src++;
if (++i < sl->num_used || terminate) {
memcpy(dst, join, join_len);
dst += join_len;
}
}
*dst = '\0';
if (len_out)
*len_out = dst-r;
return r;
}
/* Splay-tree implementation of string-to-void* map
*/
struct strmap_entry_t {
SPLAY_ENTRY(strmap_entry_t) node;
char *key;
void *val;
};
struct strmap_t {
SPLAY_HEAD(strmap_tree, strmap_entry_t) head;
};
static int compare_strmap_entries(struct strmap_entry_t *a,
struct strmap_entry_t *b)
{
return strcmp(a->key, b->key);
}
SPLAY_PROTOTYPE(strmap_tree, strmap_entry_t, node, compare_strmap_entries);
SPLAY_GENERATE(strmap_tree, strmap_entry_t, node, compare_strmap_entries);
/** Create a new empty map from strings to void*'s.
*/
strmap_t* strmap_new(void)
{
strmap_t *result;
result = tor_malloc(sizeof(strmap_t));
SPLAY_INIT(&result->head);
return result;
}
/** Set the current value for <b>key</b> to <b>val</b>. Returns the previous
* value for <b>key</b> if one was set, or NULL if one was not.
*
* This function makes a copy of <b>key</b> if necessary, but not of <b>val</b>.
*/
void* strmap_set(strmap_t *map, const char *key, void *val)
{
strmap_entry_t *resolve;
strmap_entry_t search;
void *oldval;
tor_assert(map);
tor_assert(key);
tor_assert(val);
search.key = (char*)key;
resolve = SPLAY_FIND(strmap_tree, &map->head, &search);
if (resolve) {
oldval = resolve->val;
resolve->val = val;
return oldval;
} else {
resolve = tor_malloc_zero(sizeof(strmap_entry_t));
resolve->key = tor_strdup(key);
resolve->val = val;
SPLAY_INSERT(strmap_tree, &map->head, resolve);
return NULL;
}
}
/** Return the current value associated with <b>key</b>, or NULL if no
* value is set.
*/
void* strmap_get(strmap_t *map, const char *key)
{
strmap_entry_t *resolve;
strmap_entry_t search;
tor_assert(map);
tor_assert(key);
search.key = (char*)key;
resolve = SPLAY_FIND(strmap_tree, &map->head, &search);
if (resolve) {
return resolve->val;
} else {
return NULL;
}
}
/** Remove the value currently associated with <b>key</b> from the map.
* Return the value if one was set, or NULL if there was no entry for
* <b>key</b>.
*
* Note: you must free any storage associated with the returned value.
*/
void* strmap_remove(strmap_t *map, const char *key)
{
strmap_entry_t *resolve;
strmap_entry_t search;
void *oldval;
tor_assert(map);
tor_assert(key);
search.key = (char*)key;
resolve = SPLAY_FIND(strmap_tree, &map->head, &search);
if (resolve) {
oldval = resolve->val;
SPLAY_REMOVE(strmap_tree, &map->head, resolve);
tor_free(resolve->key);
tor_free(resolve);
return oldval;
} else {
return NULL;
}
}
/** Same as strmap_set, but first converts <b>key</b> to lowercase. */
void* strmap_set_lc(strmap_t *map, const char *key, void *val)
{
/* We could be a little faster by using strcasecmp instead, and a separate
* type, but I don't think it matters. */
void *v;
char *lc_key = tor_strdup(key);
tor_strlower(lc_key);
v = strmap_set(map,lc_key,val);
tor_free(lc_key);
return v;
}
/** Same as strmap_get, but first converts <b>key</b> to lowercase. */
void* strmap_get_lc(strmap_t *map, const char *key)
{
void *v;
char *lc_key = tor_strdup(key);
tor_strlower(lc_key);
v = strmap_get(map,lc_key);
tor_free(lc_key);
return v;
}
/** Same as strmap_remove, but first converts <b>key</b> to lowercase */
void* strmap_remove_lc(strmap_t *map, const char *key)
{
void *v;
char *lc_key = tor_strdup(key);
tor_strlower(lc_key);
v = strmap_remove(map,lc_key);
tor_free(lc_key);
return v;
}
/** Invoke fn() on every entry of the map, in order. For every entry,
* fn() is invoked with that entry's key, that entry's value, and the
* value of <b>data</b> supplied to strmap_foreach. fn() must return a new
* (possibly unmodified) value for each entry: if fn() returns NULL, the
* entry is removed.
*
* Example:
* \code
* static void* upcase_and_remove_empty_vals(const char *key, void *val,
* void* data) {
* char *cp = (char*)val;
* if (!*cp) { // val is an empty string.
* free(val);
* return NULL;
* } else {
* for (; *cp; cp++)
* *cp = toupper(*cp);
* }
* return val;
* }
* }
*
* ...
*
* strmap_foreach(map, upcase_and_remove_empty_vals, NULL);
* \endcode
*/
void strmap_foreach(strmap_t *map,
void* (*fn)(const char *key, void *val, void *data),
void *data)
{
strmap_entry_t *ptr, *next;
tor_assert(map);
tor_assert(fn);
for (ptr = SPLAY_MIN(strmap_tree, &map->head); ptr != NULL; ptr = next) {
/* This remove-in-place usage is specifically blessed in tree(3). */
next = SPLAY_NEXT(strmap_tree, &map->head, ptr);
ptr->val = fn(ptr->key, ptr->val, data);
if (!ptr->val) {
SPLAY_REMOVE(strmap_tree, &map->head, ptr);
tor_free(ptr->key);
tor_free(ptr);
}
}
}
/** return an <b>iterator</b> pointer to the front of a map.
*
* Iterator example:
*
* \code
* // uppercase values in "map", removing empty values.
*
* strmap_iter_t *iter;
* const char *key;
* void *val;
* char *cp;
*
* for (iter = strmap_iter_init(map); !strmap_iter_done(iter); ) {
* strmap_iter_get(iter, &key, &val);
* cp = (char*)val;
* if (!*cp) {
* iter = strmap_iter_next_rmv(iter);
* free(val);
* } else {
* for (;*cp;cp++) *cp = toupper(*cp);
* iter = strmap_iter_next(iter);
* }
* }
* \endcode
*
*/
strmap_iter_t *strmap_iter_init(strmap_t *map)
{
tor_assert(map);
return SPLAY_MIN(strmap_tree, &map->head);
}
/** Advance the iterator <b>iter</b> for map a single step to the next entry.
*/
strmap_iter_t *strmap_iter_next(strmap_t *map, strmap_iter_t *iter)
{
tor_assert(map);
tor_assert(iter);
return SPLAY_NEXT(strmap_tree, &map->head, iter);
}
/** Advance the iterator <b>iter</b> a single step to the next entry, removing
* the current entry.
*/
strmap_iter_t *strmap_iter_next_rmv(strmap_t *map, strmap_iter_t *iter)
{
strmap_iter_t *next;
tor_assert(map);
tor_assert(iter);
next = SPLAY_NEXT(strmap_tree, &map->head, iter);
SPLAY_REMOVE(strmap_tree, &map->head, iter);
tor_free(iter->key);
tor_free(iter);
return next;
}
/** Set *keyp and *valp to the current entry pointed to by iter.
*/
void strmap_iter_get(strmap_iter_t *iter, const char **keyp, void **valp)
{
tor_assert(iter);
tor_assert(keyp);
tor_assert(valp);
*keyp = iter->key;
*valp = iter->val;
}
/** Return true iff iter has advanced past the last entry of map.
*/
int strmap_iter_done(strmap_iter_t *iter)
{
return iter == NULL;
}
/** Remove all entries from <b>map</b>, and deallocate storage for those entries.
* If free_val is provided, it is invoked on every value in <b>map</b>.
*/
void
strmap_free(strmap_t *map, void (*free_val)(void*))
{
strmap_entry_t *ent, *next;
for (ent = SPLAY_MIN(strmap_tree, &map->head); ent != NULL; ent = next) {
next = SPLAY_NEXT(strmap_tree, &map->head, ent);
SPLAY_REMOVE(strmap_tree, &map->head, ent);
tor_free(ent->key);
if (free_val)
tor_free(ent->val);
}
tor_assert(SPLAY_EMPTY(&map->head));
tor_free(map);
}
int strmap_isempty(strmap_t *map)
{
return SPLAY_EMPTY(&map->head);
}