tor/src/common/address.c

1244 lines
35 KiB
C
Raw Normal View History

/* Copyright (c) 2003-2004, Roger Dingledine
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2008, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/* $Id$ */
const char address_c_id[] =
"$Id$";
/**
* \file address.c
* \brief DOCDOC
**/
/* This is required on rh7 to make strptime not complain.
* We also need it to make memmem get defined (where available)
*/
#define _GNU_SOURCE
#include "orconfig.h"
#include "compat.h"
#include "util.h"
#include "address.h"
#include "log.h"
#ifdef MS_WINDOWS
#include <process.h>
#include <windows.h>
#endif
#ifdef HAVE_UNAME
#include <sys/utsname.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_FCNTL_H
#include <sys/fcntl.h>
#endif
#ifdef HAVE_PWD_H
#include <pwd.h>
#endif
#ifdef HAVE_GRP_H
#include <grp.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#ifdef HAVE_ARPA_INET_H
#include <arpa/inet.h>
#endif
#ifndef HAVE_GETTIMEOFDAY
#ifdef HAVE_FTIME
#include <sys/timeb.h>
#endif
#endif
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#ifdef HAVE_NETDB_H
#include <netdb.h>
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h> /* FreeBSD needs this to know what version it is */
#endif
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#ifdef HAVE_PTHREAD_H
#include <pthread.h>
#endif
#ifdef HAVE_SIGNAL_H
#include <signal.h>
#endif
#ifdef HAVE_UTIME_H
#include <utime.h>
#endif
#ifdef HAVE_SYS_UTIME_H
#include <sys/utime.h>
#endif
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#ifdef HAVE_SYS_SYSLIMITS_H
#include <sys/syslimits.h>
#endif
/** Convert the tor_addr_t in <b>a</b>, with port in <b>port</b>, into a
* socklen object in *<b>sa_out</b> of object size <b>len</b>. If not enough
* room is free, or on error, return -1. Else return the length of the
* sockaddr. */
socklen_t
tor_addr_to_sockaddr(const tor_addr_t *a,
uint16_t port,
struct sockaddr *sa_out,
socklen_t len)
{
if (a->family == AF_INET) {
struct sockaddr_in *sin;
if (len < sizeof(struct sockaddr_in))
return -1;
sin = (struct sockaddr_in *)sa_out;
sin->sin_family = AF_INET;
sin->sin_port = port;
sin->sin_addr.s_addr = a->addr.in_addr.s_addr;
return sizeof(struct sockaddr_in);
} else if (a->family == AF_INET6) {
struct sockaddr_in6 *sin6;
if (len < sizeof(struct sockaddr_in6))
return -1;
sin6 = (struct sockaddr_in6 *)sa_out;
memset(sin6, 0, sizeof(struct sockaddr_in6));
sin6->sin6_family = AF_INET6;
sin6->sin6_port = port;
memcpy(&sin6->sin6_addr, &a->addr.in6_addr, sizeof(struct in6_addr));
return sizeof(struct sockaddr_in6);
} else {
return -1;
}
}
/** Set the tor_addr_t in <b>a</b> to contain the socket address contained in
* <b>sa</b>. */
void
tor_addr_from_sockaddr(tor_addr_t *a, const struct sockaddr *sa)
{
tor_assert(a);
tor_assert(sa);
memset(a, 0, sizeof(tor_addr_t));
if (sa->sa_family == AF_INET) {
struct sockaddr_in *sin = (struct sockaddr_in *) sa;
a->family = AF_INET;
a->addr.in_addr.s_addr = sin->sin_addr.s_addr;
} else if (sa->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) sa;
a->family = AF_INET6;
memcpy(&a->addr.in6_addr, &sin6->sin6_addr, sizeof(struct in6_addr));
} else {
a->family = AF_UNSPEC;
}
}
/** Similar behavior to Unix gethostbyname: resolve <b>name</b>, and set
* *<b>addr</b> to the proper IP address and family. The <b>family</b>
* argument (which must be AF_INET, AF_INET6, or AF_UNSPEC) declares a
* <i>preferred</i> family, though another one may be returned if only one
* family is implemented for this address.
*
* Return 0 on success, -1 on failure; 1 on transient failure.
*/
int
tor_addr_lookup(const char *name, uint16_t family, tor_addr_t *addr)
{
/* Perhaps eventually this should be replaced by a tor_getaddrinfo or
* something.
*/
struct in_addr iaddr;
struct in6_addr iaddr6;
tor_assert(name);
tor_assert(addr);
tor_assert(family == AF_INET || family == AF_INET6 || family == AF_UNSPEC);
memset(addr, 0, sizeof(addr)); /* Clear the extraneous fields. */
if (!*name) {
/* Empty address is an error. */
return -1;
} else if (tor_inet_pton(AF_INET, name, &iaddr)) {
/* It's an IPv4 IP. */
addr->family = AF_INET;
memcpy(&addr->addr.in_addr, &iaddr, sizeof(struct in_addr));
return 0;
} else if (tor_inet_pton(AF_INET6, name, &iaddr6)) {
addr->family = AF_INET6;
memcpy(&addr->addr.in6_addr, &iaddr6, sizeof(struct in6_addr));
return 0;
} else {
#ifdef HAVE_GETADDRINFO
int err;
struct addrinfo *res=NULL, *res_p;
struct addrinfo *best=NULL;
struct addrinfo hints;
int result = -1;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
err = getaddrinfo(name, NULL, &hints, &res);
if (!err) {
best = NULL;
for (res_p = res; res_p; res_p = res_p->ai_next) {
if (family == AF_UNSPEC) {
if (res_p->ai_family == AF_INET) {
best = res_p;
break;
} else if (res_p->ai_family == AF_INET6 && !best) {
best = res_p;
}
} else if (family == res_p->ai_family) {
best = res_p;
break;
}
}
if (!best)
best = res;
if (best->ai_family == AF_INET) {
addr->family = AF_INET;
memcpy(&addr->addr.in_addr,
&((struct sockaddr_in*)best->ai_addr)->sin_addr,
sizeof(struct in_addr));
result = 0;
} else if (best->ai_family == AF_INET6) {
addr->family = AF_INET6;
memcpy(&addr->addr.in6_addr,
&((struct sockaddr_in6*)best->ai_addr)->sin6_addr,
sizeof(struct in6_addr));
result = 0;
}
freeaddrinfo(res);
return result;
}
return (err == EAI_AGAIN) ? 1 : -1;
#else
struct hostent *ent;
int err;
#ifdef HAVE_GETHOSTBYNAME_R_6_ARG
char buf[2048];
struct hostent hostent;
int r;
r = gethostbyname_r(name, &hostent, buf, sizeof(buf), &ent, &err);
#elif defined(HAVE_GETHOSTBYNAME_R_5_ARG)
char buf[2048];
struct hostent hostent;
ent = gethostbyname_r(name, &hostent, buf, sizeof(buf), &err);
#elif defined(HAVE_GETHOSTBYNAME_R_3_ARG)
struct hostent_data data;
struct hostent hent;
memset(&data, 0, sizeof(data));
err = gethostbyname_r(name, &hent, &data);
ent = err ? NULL : &hent;
#else
ent = gethostbyname(name);
#ifdef MS_WINDOWS
err = WSAGetLastError();
#else
err = h_errno;
#endif
#endif /* endif HAVE_GETHOSTBYNAME_R_6_ARG. */
if (ent) {
addr->family = ent->h_addrtype;
if (ent->h_addrtype == AF_INET) {
memcpy(&addr->addr.in_addr, ent->h_addr, sizeof(struct in_addr));
} else if (ent->h_addrtype == AF_INET6) {
memcpy(&addr->addr.in6_addr, ent->h_addr, sizeof(struct in6_addr));
} else {
tor_assert(0); /* gethostbyname() returned a bizarre addrtype */
}
return 0;
}
#ifdef MS_WINDOWS
return (err == WSATRY_AGAIN) ? 1 : -1;
#else
return (err == TRY_AGAIN) ? 1 : -1;
#endif
#endif
}
}
/** Return true iff <b>ip</b> is an IP reserved to localhost or local networks
* in RFC1918 or RFC4193 or RFC4291. (fec0::/10, deprecated by RFC3879, is
* also treated as internal for now.)
*/
int
tor_addr_is_internal(const tor_addr_t *addr, int for_listening)
{
uint32_t iph4 = 0;
uint32_t iph6[4];
sa_family_t v_family;
v_family = tor_addr_family(addr);
if (v_family == AF_INET) {
iph4 = tor_addr_to_ipv4h(addr);
} else if (v_family == AF_INET6) {
if (tor_addr_is_v4(addr)) { /* v4-mapped */
v_family = AF_INET;
iph4 = ntohl(tor_addr_to_in6_addr32(addr)[3]);
}
}
if (v_family == AF_INET6) {
const uint32_t *a32 = tor_addr_to_in6_addr32(addr);
iph6[0] = ntohl(a32[0]);
iph6[1] = ntohl(a32[1]);
iph6[2] = ntohl(a32[2]);
iph6[3] = ntohl(a32[3]);
if (for_listening && !iph6[0] && !iph6[1] && !iph6[2] && !iph6[3]) /* :: */
return 0;
if (((iph6[0] & 0xfe000000) == 0xfc000000) || /* fc00/7 - RFC4193 */
((iph6[0] & 0xffc00000) == 0xfe800000) || /* fe80/10 - RFC4291 */
((iph6[0] & 0xffc00000) == 0xfec00000)) /* fec0/10 D- RFC3879 */
return 1;
if (!iph6[0] && !iph6[1] && !iph6[2] &&
((iph6[3] & 0xfffffffe) == 0x00000000)) /* ::/127 */
return 1;
return 0;
} else if (v_family == AF_INET) {
if (for_listening && !iph4) /* special case for binding to 0.0.0.0 */
return 0;
if (((iph4 & 0xff000000) == 0x0a000000) || /* 10/8 */
((iph4 & 0xff000000) == 0x00000000) || /* 0/8 */
((iph4 & 0xff000000) == 0x7f000000) || /* 127/8 */
((iph4 & 0xffff0000) == 0xa9fe0000) || /* 169.254/16 */
((iph4 & 0xfff00000) == 0xac100000) || /* 172.16/12 */
((iph4 & 0xffff0000) == 0xc0a80000)) /* 192.168/16 */
return 1;
return 0;
}
/* unknown address family... assume it's not safe for external use */
/* rather than tor_assert(0) */
log_warn(LD_BUG, "tor_addr_is_internal() called with a non-IP address.");
return 1;
}
/** Convert a tor_addr_t <b>addr</b> into a string, and store it in
* <b>dest</b> of size <b>len</b>. Returns a pointer to dest on success,
* or NULL on failure. If <b>decorate</b>, surround IPv6 addresses with
* brackets.
*/
const char *
tor_addr_to_str(char *dest, const tor_addr_t *addr, int len, int decorate)
{
const char *ptr;
tor_assert(addr && dest);
switch (tor_addr_family(addr)) {
case AF_INET:
if (len<3)
return NULL;
ptr = tor_inet_ntop(AF_INET, &addr->addr.in_addr, dest, len);
break;
case AF_INET6:
if (decorate)
ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest+1, len-2);
else
ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest, len);
if (ptr && decorate) {
*dest = '[';
memcpy(dest+strlen(dest), "]", 2);
tor_assert(ptr == dest+1);
ptr = dest;
}
break;
default:
return NULL;
}
return ptr;
}
/** Parse a string <b>s</b> containing an IPv4/IPv6 address, and possibly
* a mask and port or port range. Store the parsed address in
* <b>addr_out</b>, a mask (if any) in <b>mask_out</b>, and port(s) (if any)
* in <b>port_min_out</b> and <b>port_max_out</b>.
*
* The syntax is:
* Address OptMask OptPortRange
* Address ::= IPv4Address / "[" IPv6Address "]" / "*"
* OptMask ::= "/" Integer /
* OptPortRange ::= ":*" / ":" Integer / ":" Integer "-" Integer /
*
* - If mask, minport, or maxport are NULL, we do not want these
* options to be set; treat them as an error if present.
* - If the string has no mask, the mask is set to /32 (IPv4) or /128 (IPv6).
* - If the string has one port, it is placed in both min and max port
* variables.
* - If the string has no port(s), port_(min|max)_out are set to 1 and 65535.
*
* Return an address family on success, or -1 if an invalid address string is
* provided.
*/
int
tor_addr_parse_mask_ports(const char *s, tor_addr_t *addr_out,
maskbits_t *maskbits_out,
uint16_t *port_min_out, uint16_t *port_max_out)
{
char *base = NULL, *address, *mask = NULL, *port = NULL, *rbracket = NULL;
char *endptr;
int any_flag=0, v4map=0;
tor_assert(s);
tor_assert(addr_out);
/* IP, [], /mask, ports */
#define MAX_ADDRESS_LENGTH (TOR_ADDR_BUF_LEN+2+(1+INET_NTOA_BUF_LEN)+12+1)
if (strlen(s) > MAX_ADDRESS_LENGTH) {
log_warn(LD_GENERAL, "Impossibly long IP %s; rejecting", escaped(s));
goto err;
}
base = tor_strdup(s);
/* Break 'base' into separate strings. */
address = base;
if (*address == '[') { /* Probably IPv6 */
address++;
rbracket = strchr(address, ']');
if (!rbracket) {
log_warn(LD_GENERAL,
"No closing IPv6 bracket in address pattern; rejecting.");
goto err;
}
}
mask = strchr((rbracket?rbracket:address),'/');
port = strchr((mask?mask:(rbracket?rbracket:address)), ':');
if (port)
*port++ = '\0';
if (mask)
*mask++ = '\0';
if (rbracket)
*rbracket = '\0';
if (port && mask)
tor_assert(port > mask);
if (mask && rbracket)
tor_assert(mask > rbracket);
/* Now "address" is the a.b.c.d|'*'|abcd::1 part...
* "mask" is the Mask|Maskbits part...
* and "port" is the *|port|min-max part.
*/
/* Process the address portion */
memset(addr_out, 0, sizeof(tor_addr_t));
if (!strcmp(address, "*")) {
addr_out->family = AF_INET; /* AF_UNSPEC ???? XXXX_IP6 */
any_flag = 1;
} else if (tor_inet_pton(AF_INET6, address, &addr_out->addr.in6_addr) > 0) {
addr_out->family = AF_INET6;
} else if (tor_inet_pton(AF_INET, address, &addr_out->addr.in_addr) > 0) {
addr_out->family = AF_INET;
} else {
log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
escaped(address));
goto err;
}
v4map = tor_addr_is_v4(addr_out);
/*
#ifdef ALWAYS_V6_MAP
if (v_family == AF_INET) {
v_family = AF_INET6;
IN_ADDR6(addr_out).s6_addr32[3] = IN6_ADDRESS(addr_out).s_addr;
memset(&IN6_ADDRESS(addr_out), 0, 10);
IN_ADDR6(addr_out).s6_addr16[5] = 0xffff;
}
#else
if (v_family == AF_INET6 && v4map) {
v_family = AF_INET;
IN4_ADDRESS((addr_out).s_addr = IN6_ADDRESS(addr_out).s6_addr32[3];
}
#endif
*/
/* Parse mask */
if (maskbits_out) {
int bits = 0;
struct in_addr v4mask;
if (mask) { /* the caller (tried to) specify a mask */
bits = (int) strtol(mask, &endptr, 10);
if (!*endptr) { /* strtol converted everything, so it was an integer */
if ((bits<0 || bits>128) ||
((tor_addr_family(addr_out) == AF_INET) && bits > 32)) {
log_warn(LD_GENERAL,
"Bad number of mask bits (%d) on address range; rejecting.",
bits);
goto err;
}
} else { /* mask might still be an address-style mask */
if (tor_inet_pton(AF_INET, mask, &v4mask) > 0) {
bits = addr_mask_get_bits(ntohl(v4mask.s_addr));
if (bits < 0) {
log_warn(LD_GENERAL,
"IPv4-style mask %s is not a prefix address; rejecting.",
escaped(mask));
goto err;
}
} else { /* Not IPv4; we don't do address-style IPv6 masks. */
log_warn(LD_GENERAL,
"Malformed mask on address range %s; rejecting.",
escaped(s));
goto err;
}
}
if (tor_addr_family(addr_out) == AF_INET6 && v4map) {
if (bits > 32 && bits < 96) { /* Crazy */
log_warn(LD_GENERAL,
"Bad mask bits %i for V4-mapped V6 address; rejecting.",
bits);
goto err;
}
/* XXXX_IP6 is this really what we want? */
bits = 96 + bits%32; /* map v4-mapped masks onto 96-128 bits */
}
} else { /* pick an appropriate mask, as none was given */
if (any_flag)
bits = 0; /* This is okay whether it's V6 or V4 (FIX V4-mapped V6!) */
else if (tor_addr_family(addr_out) == AF_INET)
bits = 32;
else if (tor_addr_family(addr_out) == AF_INET6)
bits = 128;
}
*maskbits_out = (maskbits_t) bits;
} else {
if (mask) {
log_warn(LD_GENERAL,
"Unexpected mask in addrss %s; rejecting", escaped(s));
goto err;
}
}
/* Parse port(s) */
if (port_min_out) {
uint16_t port2;
if (!port_max_out) /* caller specified one port; fake the second one */
port_max_out = &port2;
if (parse_port_range(port, port_min_out, port_max_out) < 0) {
goto err;
} else if ((*port_min_out != *port_max_out) && port_max_out == &port2) {
log_warn(LD_GENERAL,
"Wanted one port from address range, but there are two.");
port_max_out = NULL; /* caller specified one port, so set this back */
goto err;
}
} else {
if (port) {
log_warn(LD_GENERAL,
"Unexpected ports in addrss %s; rejecting", escaped(s));
goto err;
}
}
tor_free(base);
return tor_addr_family(addr_out);
err:
tor_free(base);
return -1;
}
/** Determine whether an address is IPv4, either native or ipv4-mapped ipv6.
* Note that this is about representation only, as any decent stack will
* reject ipv4-mapped addresses received on the wire (and won't use them
* on the wire either).
*/
int
tor_addr_is_v4(const tor_addr_t *addr)
{
tor_assert(addr);
if (tor_addr_family(addr) == AF_INET)
return 1;
if (tor_addr_family(addr) == AF_INET6) {
/* First two don't need to be ordered */
uint32_t *a32 = tor_addr_to_in6_addr32(addr);
if (a32[0] == 0 && a32[1] == 0 && ntohl(a32[2]) == 0x0000ffffu)
return 1;
}
return 0; /* Not IPv4 - unknown family or a full-blood IPv6 address */
}
/** Determine whether an address <b>addr</b> is null, either all zeroes or
* belonging to family AF_UNSPEC.
*/
int
tor_addr_is_null(const tor_addr_t *addr)
{
tor_assert(addr);
switch (tor_addr_family(addr)) {
case AF_INET6: {
uint32_t *a32 = tor_addr_to_in6_addr32(addr);
return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 0);
}
case AF_INET:
return (tor_addr_to_ipv4n(addr) == 0);
case AF_UNSPEC:
return 1;
default:
log_warn(LD_BUG, "Called with unknown address family %d",
(int)tor_addr_family(addr));
return 0;
}
//return 1;
}
/** Return true iff <b>addr</b> is a loopback address */
int
tor_addr_is_loopback(const tor_addr_t *addr)
{
tor_assert(addr);
switch (tor_addr_family(addr)) {
case AF_INET6: {
/* ::1 */
uint32_t *a32 = tor_addr_to_in6_addr32(addr);
return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 1);
}
case AF_INET:
/* 127.0.0.1 */
return (tor_addr_to_ipv4h(addr) & 0xff000000) == 0x7f000000;
case AF_UNSPEC:
return 0;
default:
tor_fragile_assert();
return 0;
}
}
/** Take a 32-bit host-order ipv4 address <b>v4addr</b> and store it in the
* tor_addr *<b>dest</b>.
*/
/* XXXX_IP6 Temporary, for use while 32-bit int addresses are still being
* passed around. */
void
tor_addr_from_ipv4h(tor_addr_t *dest, uint32_t v4addr)
{
tor_assert(dest);
memset(dest, 0, sizeof(dest));
dest->family = AF_INET;
dest->addr.in_addr.s_addr = htonl(v4addr);
}
/** Copy a tor_addr_t from <b>src</b> to <b>dest</b>.
*/
void
tor_addr_copy(tor_addr_t *dest, const tor_addr_t *src)
{
tor_assert(src && dest);
memcpy(dest, src, sizeof(tor_addr_t));
}
/** Given two addresses <b>addr1</b> and <b>addr2</b>, return 0 if the two
* addresses are equivalent under the mask mbits, less than 0 if addr1
* preceeds addr2, and greater than 0 otherwise.
*
* Different address families (IPv4 vs IPv6) are always considered unequal.
* NOT QUITE XXXX DOCDOC.
*/
int
tor_addr_compare(const tor_addr_t *addr1, const tor_addr_t *addr2,
tor_addr_comparison_t how)
{
return tor_addr_compare_masked(addr1, addr2, 128, how);
}
/** As tor_addr_compare(), but only looks at the first <b>mask</b> bits of
* the address.
*
* Reduce over-specific masks (>128 for ipv6, >32 for ipv4) to 128 or 32.
*/
int
tor_addr_compare_masked(const tor_addr_t *addr1, const tor_addr_t *addr2,
maskbits_t mbits, tor_addr_comparison_t how)
{
uint32_t ip4a=0, ip4b=0;
sa_family_t v_family[2];
int idx;
uint32_t masked_a, masked_b;
tor_assert(addr1 && addr2);
if (how == CMP_EXACT) {
int r = ((int)addr2->family) - ((int)addr1->family);
if (r) return r;
switch (addr1->family) {
case AF_UNSPEC:
return 0; /* All unspecified addresses are equal */
case AF_INET: {
uint32_t a1 = ntohl(addr1->addr.in_addr.s_addr);
uint32_t a2 = ntohl(addr2->addr.in_addr.s_addr);
a1 >>= (32-mbits);
a2 >>= (32-mbits);
return (a1 < a2) ? -1 : (a1 == a2) ? 0 : 1;
}
case AF_INET6: {
uint8_t *a1 = addr1->addr.in6_addr.s6_addr;
uint8_t *a2 = addr2->addr.in6_addr.s6_addr;
const int bytes = mbits >> 3;
const int leftover_bits = mbits & 7;
if (bytes && (r = memcmp(a1, a2, bytes))) {
return r;
} else if (leftover_bits) {
uint8_t b1 = a1[bytes] >> (8-leftover_bits);
uint8_t b2 = a2[bytes] >> (8-leftover_bits);
return (b1 < b2) ? -1 : (b1 == b2) ? 0 : 1;
} else {
return 0;
}
}
default:
tor_fragile_assert();
return 0;
}
}
/* XXXX021 this code doesn't handle mask bits right it's using v4-mapped v6
* addresses. If I ask whether ::ffff:1.2.3.4 and ::ffff:1.2.7.8 are the
* same in the first 16 bits, it will say "yes." That's not so intuitive.
*
* XXXX021 Also, it's way too complicated.
*/
v_family[0] = tor_addr_family(addr1);
v_family[1] = tor_addr_family(addr2);
/* All UNSPEC addresses are equal; they are unequal to all other addresses.*/
if (v_family[0] == AF_UNSPEC) {
if (v_family[1] == AF_UNSPEC)
return 0;
else
return 1;
} else {
if (v_family[1] == AF_UNSPEC)
return -1;
}
if (v_family[0] == AF_INET) { /* If this is native IPv4, note the address */
/* Later we risk overwriting a v4-mapped address */
ip4a = tor_addr_to_ipv4h(addr1);
} else if ((v_family[0] == AF_INET6) && tor_addr_is_v4(addr1)) {
v_family[0] = AF_INET;
ip4a = tor_addr_to_mapped_ipv4h(addr1);
}
if (v_family[1] == AF_INET) { /* If this is native IPv4, note the address */
/* Later we risk overwriting a v4-mapped address */
ip4b = tor_addr_to_ipv4h(addr2);
} else if ((v_family[1] == AF_INET6) && tor_addr_is_v4(addr2)) {
v_family[1] = AF_INET;
ip4b = tor_addr_to_mapped_ipv4h(addr2);
}
if (v_family[0] > v_family[1]) /* Comparison of virtual families */
return 1;
else if (v_family[0] < v_family[1])
return -1;
if (mbits == 0) /* Under a complete wildcard mask, consider them equal */
return 0;
if (v_family[0] == AF_INET) { /* Real or mapped IPv4 */
if (mbits >= 32) {
masked_a = ip4a;
masked_b = ip4b;
} else if (mbits == 0) {
return 0;
} else {
masked_a = ip4a >> (32-mbits);
masked_b = ip4b >> (32-mbits);
}
if (masked_a < masked_b)
return -1;
else if (masked_a > masked_b)
return 1;
return 0;
} else if (v_family[0] == AF_INET6) { /* Real IPv6 */
const uint32_t *a1 = tor_addr_to_in6_addr32(addr1);
const uint32_t *a2 = tor_addr_to_in6_addr32(addr2);
for (idx = 0; idx < 4; ++idx) {
uint32_t masked_a = ntohl(a1[idx]);
uint32_t masked_b = ntohl(a2[idx]);
if (!mbits) {
return 0; /* Mask covers both addresses from here on */
} else if (mbits < 32) {
masked_a >>= (32-mbits);
masked_b >>= (32-mbits);
}
if (masked_a > masked_b)
return 1;
else if (masked_a < masked_b)
return -1;
if (mbits < 32)
return 0;
mbits -= 32;
}
return 0;
}
tor_assert(0); /* Unknown address family */
return -1; /* unknown address family, return unequal? */
}
/** Return a hash code based on the address addr */
unsigned int
tor_addr_hash(const tor_addr_t *addr)
{
switch (tor_addr_family(addr)) {
case AF_INET:
return tor_addr_to_ipv4h(addr);
case AF_UNSPEC:
return 0x4e4d5342;
case AF_INET6: {
const uint32_t *u = tor_addr_to_in6_addr32(addr);
return u[0] + u[1] + u[2] + u[3];
}
default:
tor_fragile_assert();
return 0;
}
}
/** Return a newly allocatd string with a representation of <b>addr</b>. */
char *
tor_dup_addr(const tor_addr_t *addr)
{
char buf[TOR_ADDR_BUF_LEN];
tor_addr_to_str(buf, addr, sizeof(buf), 0);
return tor_strdup(buf);
}
/** Convert the string in <b>src</b> to a tor_addr_t <b>addr</b>. The string
* may be an IPv4 address, an IPv6 address, or an IPv6 address surrounded by
* square brackets.
*
* Return an address family on success, or -1 if an invalid address string is
* provided. */
int
tor_addr_from_str(tor_addr_t *addr, const char *src)
{
char *tmp = NULL; /* Holds substring if we got a dotted quad. */
int result;
tor_assert(addr && src);
if (src[0] == '[' && src[1])
src = tmp = tor_strndup(src+1, strlen(src)-2);
if (tor_inet_pton(AF_INET6, src, &addr->addr.in6_addr) > 0) {
result = addr->family = AF_INET6;
} else if (tor_inet_pton(AF_INET, src, &addr->addr.in_addr) > 0) {
result = addr->family = AF_INET;
} else {
result = -1;
}
tor_free(tmp);
return result;
}
/** Set *<b>addr</b> to the IP address (if any) of whatever interface
* connects to the internet. This address should only be used in checking
* whether our address has changed. Return 0 on success, -1 on failure.
*/
int
get_interface_address6(int severity, sa_family_t family, tor_addr_t *addr)
{
int sock=-1, r=-1;
struct sockaddr_storage my_addr, target_addr;
socklen_t my_addr_len;
tor_assert(addr);
memset(addr, 0, sizeof(tor_addr_t));
memset(&target_addr, 0, sizeof(target_addr));
my_addr_len = (socklen_t)sizeof(my_addr);
/* Use the "discard" service port */
((struct sockaddr_in*)&target_addr)->sin_port = 9;
/* Don't worry: no packets are sent. We just need to use a real address
* on the actual internet. */
if (family == AF_INET6) {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&target_addr;
sock = tor_open_socket(PF_INET6,SOCK_DGRAM,IPPROTO_UDP);
my_addr_len = (socklen_t)sizeof(struct sockaddr_in6);
sin6->sin6_family = AF_INET6;
S6_ADDR16(sin6->sin6_addr)[0] = htons(0x2002); /* 2002:: */
} else if (family == AF_INET) {
struct sockaddr_in *sin = (struct sockaddr_in*)&target_addr;
sock = tor_open_socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP);
my_addr_len = (socklen_t)sizeof(struct sockaddr_in);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(0x12000001); /* 18.0.0.1 */
} else {
return -1;
}
if (sock < 0) {
int e = tor_socket_errno(-1);
log_fn(severity, LD_NET, "unable to create socket: %s",
tor_socket_strerror(e));
goto err;
}
if (connect(sock,(struct sockaddr *)&target_addr,
(socklen_t)sizeof(target_addr))<0) {
int e = tor_socket_errno(sock);
log_fn(severity, LD_NET, "connect() failed: %s", tor_socket_strerror(e));
goto err;
}
if (getsockname(sock,(struct sockaddr*)&my_addr, &my_addr_len)) {
int e = tor_socket_errno(sock);
log_fn(severity, LD_NET, "getsockname() to determine interface failed: %s",
tor_socket_strerror(e));
goto err;
}
memcpy(addr, &my_addr, sizeof(tor_addr_t));
r=0;
err:
if (sock >= 0)
tor_close_socket(sock);
return r;
}
/* ======
* IPv4 helpers
* XXXX021 IPv6 deprecate some of these.
*/
/** Return true iff <b>ip</b> (in host order) is an IP reserved to localhost,
* or reserved for local networks by RFC 1918.
*/
int
is_internal_IP(uint32_t ip, int for_listening)
{
tor_addr_t myaddr;
myaddr.family = AF_INET;
myaddr.addr.in_addr.s_addr = htonl(ip);
return tor_addr_is_internal(&myaddr, for_listening);
}
/** Parse a string of the form "host[:port]" from <b>addrport</b>. If
* <b>address</b> is provided, set *<b>address</b> to a copy of the
* host portion of the string. If <b>addr</b> is provided, try to
* resolve the host portion of the string and store it into
* *<b>addr</b> (in host byte order). If <b>port_out</b> is provided,
* store the port number into *<b>port_out</b>, or 0 if no port is given.
* If <b>port_out</b> is NULL, then there must be no port number in
* <b>addrport</b>.
* Return 0 on success, -1 on failure.
*/
int
parse_addr_port(int severity, const char *addrport, char **address,
uint32_t *addr, uint16_t *port_out)
{
const char *colon;
char *_address = NULL;
int _port;
int ok = 1;
tor_assert(addrport);
colon = strchr(addrport, ':');
if (colon) {
_address = tor_strndup(addrport, colon-addrport);
_port = (int) tor_parse_long(colon+1,10,1,65535,NULL,NULL);
if (!_port) {
log_fn(severity, LD_GENERAL, "Port %s out of range", escaped(colon+1));
ok = 0;
}
if (!port_out) {
char *esc_addrport = esc_for_log(addrport);
log_fn(severity, LD_GENERAL,
"Port %s given on %s when not required",
escaped(colon+1), esc_addrport);
tor_free(esc_addrport);
ok = 0;
}
} else {
_address = tor_strdup(addrport);
_port = 0;
}
if (addr) {
/* There's an addr pointer, so we need to resolve the hostname. */
if (tor_lookup_hostname(_address,addr)) {
log_fn(severity, LD_NET, "Couldn't look up %s", escaped(_address));
ok = 0;
*addr = 0;
}
}
if (address && ok) {
*address = _address;
} else {
if (address)
*address = NULL;
tor_free(_address);
}
if (port_out)
*port_out = ok ? ((uint16_t) _port) : 0;
return ok ? 0 : -1;
}
/** If <b>mask</b> is an address mask for a bit-prefix, return the number of
* bits. Otherwise, return -1. */
int
addr_mask_get_bits(uint32_t mask)
{
int i;
if (mask == 0)
return 0;
if (mask == 0xFFFFFFFFu)
return 32;
for (i=0; i<=32; ++i) {
if (mask == (uint32_t) ~((1u<<(32-i))-1)) {
return i;
}
}
return -1;
}
/** Compare two addresses <b>a1</b> and <b>a2</b> for equality under a
* netmask of <b>mbits</b> bits. Return -1, 0, or 1.
*
* XXXX_IP6 Temporary function to allow masks as bitcounts everywhere. This
* will be replaced with an IPv6-aware version as soon as 32-bit addresses are
* no longer passed around.
*/
int
addr_mask_cmp_bits(uint32_t a1, uint32_t a2, maskbits_t bits)
{
if (bits > 32)
bits = 32;
else if (bits == 0)
return 0;
a1 >>= (32-bits);
a2 >>= (32-bits);
if (a1 < a2)
return -1;
else if (a1 > a2)
return 1;
else
return 0;
}
/** Parse a string <b>s</b> in the format of (*|port(-maxport)?)?, setting the
* various *out pointers as appropriate. Return 0 on success, -1 on failure.
*/
int
parse_port_range(const char *port, uint16_t *port_min_out,
uint16_t *port_max_out)
{
int port_min, port_max, ok;
tor_assert(port_min_out);
tor_assert(port_max_out);
if (!port || *port == '\0' || strcmp(port, "*") == 0) {
port_min = 1;
port_max = 65535;
} else {
char *endptr = NULL;
port_min = (int)tor_parse_long(port, 10, 0, 65535, &ok, &endptr);
if (!ok) {
log_warn(LD_GENERAL,
"Malformed port %s on address range; rejecting.",
escaped(port));
return -1;
} else if (endptr && *endptr == '-') {
port = endptr+1;
endptr = NULL;
port_max = (int)tor_parse_long(port, 10, 1, 65536, &ok, &endptr);
if (!ok) {
log_warn(LD_GENERAL,
"Malformed port %s on address range; rejecting.",
escaped(port));
return -1;
}
} else {
port_max = port_min;
}
if (port_min > port_max) {
log_warn(LD_GENERAL, "Insane port range on address policy; rejecting.");
return -1;
}
}
if (port_min < 1)
port_min = 1;
if (port_max > 65535)
port_max = 65535;
*port_min_out = (uint16_t) port_min;
*port_max_out = (uint16_t) port_max;
return 0;
}
/** Parse a string <b>s</b> in the format of
* (IP(/mask|/mask-bits)?|*)(:(*|port(-maxport))?)?, setting the various
* *out pointers as appropriate. Return 0 on success, -1 on failure.
*/
int
parse_addr_and_port_range(const char *s, uint32_t *addr_out,
maskbits_t *maskbits_out, uint16_t *port_min_out,
uint16_t *port_max_out)
{
char *address;
char *mask, *port, *endptr;
struct in_addr in;
int bits;
tor_assert(s);
tor_assert(addr_out);
tor_assert(maskbits_out);
tor_assert(port_min_out);
tor_assert(port_max_out);
address = tor_strdup(s);
/* Break 'address' into separate strings.
*/
mask = strchr(address,'/');
port = strchr(mask?mask:address,':');
if (mask)
*mask++ = '\0';
if (port)
*port++ = '\0';
/* Now "address" is the IP|'*' part...
* "mask" is the Mask|Maskbits part...
* and "port" is the *|port|min-max part.
*/
if (strcmp(address,"*")==0) {
*addr_out = 0;
} else if (tor_inet_aton(address, &in) != 0) {
*addr_out = ntohl(in.s_addr);
} else {
log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
escaped(address));
goto err;
}
if (!mask) {
if (strcmp(address,"*")==0)
*maskbits_out = 0;
else
*maskbits_out = 32;
} else {
endptr = NULL;
bits = (int) strtol(mask, &endptr, 10);
if (!*endptr) {
/* strtol handled the whole mask. */
if (bits < 0 || bits > 32) {
log_warn(LD_GENERAL,
"Bad number of mask bits on address range; rejecting.");
goto err;
}
*maskbits_out = bits;
} else if (tor_inet_aton(mask, &in) != 0) {
bits = addr_mask_get_bits(ntohl(in.s_addr));
if (bits < 0) {
log_warn(LD_GENERAL,
"Mask %s on address range isn't a prefix; dropping",
escaped(mask));
goto err;
}
*maskbits_out = bits;
} else {
log_warn(LD_GENERAL,
"Malformed mask %s on address range; rejecting.",
escaped(mask));
goto err;
}
}
if (parse_port_range(port, port_min_out, port_max_out)<0)
goto err;
tor_free(address);
return 0;
err:
tor_free(address);
return -1;
}
/** Given an IPv4 in_addr struct *<b>in</b> (in network order, as usual),
* write it as a string into the <b>buf_len</b>-byte buffer in
* <b>buf</b>.
*/
int
tor_inet_ntoa(const struct in_addr *in, char *buf, size_t buf_len)
{
uint32_t a = ntohl(in->s_addr);
return tor_snprintf(buf, buf_len, "%d.%d.%d.%d",
(int)(uint8_t)((a>>24)&0xff),
(int)(uint8_t)((a>>16)&0xff),
(int)(uint8_t)((a>>8 )&0xff),
(int)(uint8_t)((a )&0xff));
}
/** Given a host-order <b>addr</b>, call tor_inet_ntop() on it
* and return a strdup of the resulting address.
*/
char *
tor_dup_ip(uint32_t addr)
{
char buf[TOR_ADDR_BUF_LEN];
struct in_addr in;
in.s_addr = htonl(addr);
tor_inet_ntop(AF_INET, &in, buf, sizeof(buf));
return tor_strdup(buf);
}
/**
* Set *<b>addr</b> to the host-order IPv4 address (if any) of whatever
* interface connects to the internet. This address should only be used in
* checking whether our address has changed. Return 0 on success, -1 on
* failure.
*/
int
get_interface_address(int severity, uint32_t *addr)
{
tor_addr_t local_addr;
int r;
r = get_interface_address6(severity, AF_INET, &local_addr);
if (r>=0)
*addr = tor_addr_to_ipv4h(&local_addr);
return r;
}