tor/src/or/test.c

458 lines
13 KiB
C
Raw Normal View History

/* Copyright 2001,2002 Roger Dingledine, Matej Pfajfar. */
/* See LICENSE for licensing information */
/* $Id$ */
#include <stdio.h>
#include <fcntl.h>
2003-04-07 15:25:44 +02:00
#include "or.h"
#include "../common/test.h"
void
setup_directory() {
char buf[256];
sprintf(buf, "/tmp/tor_test");
if (mkdir(buf, 0700) && errno != EEXIST)
fprintf(stderr, "Can't create directory %s", buf);
}
2003-04-07 15:25:44 +02:00
void
test_buffers() {
char str[256];
char str2[256];
2003-04-07 15:25:44 +02:00
char *buf;
int buflen, buf_datalen;
char *buf2;
int buf2len, buf2_datalen;
int s, i, j, eof;
z_compression *comp;
z_decompression *decomp;
/****
* buf_new
****/
if (buf_new(&buf, &buflen, &buf_datalen))
2003-04-07 15:25:44 +02:00
test_fail();
test_eq(buflen, MAX_BUF_SIZE);
test_eq(buf_datalen, 0);
/****
* read_to_buf
****/
s = open("/tmp/tor_test/data", O_WRONLY|O_CREAT|O_TRUNC, 0600);
for (j=0;j<256;++j) {
str[j] = (char)j;
2003-04-07 15:25:44 +02:00
}
write(s, str, 256);
close(s);
s = open("/tmp/tor_test/data", O_RDONLY, 0);
eof = 0;
i = read_to_buf(s, 10, &buf, &buflen, &buf_datalen, &eof);
test_eq(buflen, MAX_BUF_SIZE);
test_eq(buf_datalen, 10);
test_eq(eof, 0);
test_eq(i, 10);
test_memeq(str, buf, 10);
/* Test reading 0 bytes. */
i = read_to_buf(s, 0, &buf, &buflen, &buf_datalen, &eof);
test_eq(buflen, MAX_BUF_SIZE);
test_eq(buf_datalen, 10);
test_eq(eof, 0);
test_eq(i, 0);
2003-04-07 15:25:44 +02:00
/* Now test when buffer is filled exactly. */
buflen = 16;
i = read_to_buf(s, 6, &buf, &buflen, &buf_datalen, &eof);
test_eq(buflen, 16);
test_eq(buf_datalen, 16);
test_eq(eof, 0);
test_eq(i, 6);
test_memeq(str, buf, 16);
/* Now test when buffer is filled with more data to read. */
buflen = 32;
i = read_to_buf(s, 128, &buf, &buflen, &buf_datalen, &eof);
test_eq(buflen, 32);
test_eq(buf_datalen, 32);
test_eq(eof, 0);
test_eq(i, 16);
test_memeq(str, buf, 32);
/* Now read to eof. */
buflen = MAX_BUF_SIZE;
test_assert(buflen > 256);
i = read_to_buf(s, 1024, &buf, &buflen, &buf_datalen, &eof);
test_eq(i, (256-32));
2003-04-07 15:25:44 +02:00
test_eq(buflen, MAX_BUF_SIZE);
test_eq(buf_datalen, 256);
test_memeq(str, buf, 256);
test_eq(eof, 0);
i = read_to_buf(s, 1024, &buf, &buflen, &buf_datalen, &eof);
test_eq(i, 0);
test_eq(buflen, MAX_BUF_SIZE);
test_eq(buf_datalen, 256);
test_eq(eof, 1);
close(s);
/****
* find_on_inbuf
****/
test_eq(((int)'d') + 1, find_on_inbuf("abcd", 4, buf, buf_datalen));
test_eq(-1, find_on_inbuf("xyzzy", 5, buf, buf_datalen));
/* Make sure we don't look off the end of the buffef */
buf[256] = 'A';
buf[257] = 'X';
test_eq(-1, find_on_inbuf("\xff" "A", 2, buf, buf_datalen));
test_eq(-1, find_on_inbuf("AX", 2, buf, buf_datalen));
/* Make sure we use the string length */
test_eq(((int)'d')+1, find_on_inbuf("abcdX", 4, buf, buf_datalen));
/****
* fetch_from_buf
****/
memset(str2, 255, 256);
test_eq(246, fetch_from_buf(str2, 10, &buf, &buflen, &buf_datalen));
test_memeq(str2, str, 10);
test_memeq(str+10,buf,246);
test_eq(buf_datalen,246);
test_eq(-1, fetch_from_buf(str2, 247, &buf, &buflen, &buf_datalen));
test_memeq(str+10,buf,246);
test_eq(buf_datalen, 246);
test_eq(0, fetch_from_buf(str2, 246, &buf, &buflen, &buf_datalen));
test_memeq(str2, str+10, 246);
test_eq(buflen,MAX_BUF_SIZE);
test_eq(buf_datalen,0);
/****
* write_to_buf
****/
memset(buf, (int)'-', 256);
i = write_to_buf("Hello world", 11, &buf, &buflen, &buf_datalen);
test_eq(i, 11);
test_eq(buf_datalen, 11);
test_memeq(buf, "Hello world", 11);
i = write_to_buf("XYZZY", 5, &buf, &buflen, &buf_datalen);
test_eq(i, 16);
test_eq(buf_datalen, 16);
test_memeq(buf, "Hello worldXYZZY", 16);
/* Test when buffer is overfull. */
buflen = 18;
test_eq(-1, write_to_buf("This string will not fit.", 25,
&buf, &buflen, &buf_datalen));
test_eq(buf_datalen, 16);
test_memeq(buf, "Hello worldXYZZY--", 18);
buflen = MAX_BUF_SIZE;
/****
* flush_buf
****/
/* XXXX Needs tests. */
/***
* compress_from_buf (simple)
***/
buf_datalen = 0;
comp = compression_new();
for (i = 0; i < 20; ++i) {
write_to_buf("Hello world. ", 14, &buf, &buflen, &buf_datalen);
}
i = compress_from_buf(str, 256, &buf, &buflen, &buf_datalen, comp,
Z_SYNC_FLUSH);
2003-04-07 15:25:44 +02:00
test_eq(buf_datalen, 0);
/*
for (j = 0; j <i ; ++j) {
printf("%x '%c'\n", ((int) str[j])&0xff, str[j]);
}
*/
/* Now try decompressing. */
decomp = decompression_new();
if (buf_new(&buf2, &buf2len, &buf2_datalen))
test_fail();
buf_datalen = 0;
test_eq(i, write_to_buf(str, i, &buf, &buflen, &buf_datalen));
j = decompress_buf_to_buf(&buf, &buflen, &buf_datalen,
&buf2, &buf2len, &buf2_datalen,
decomp, Z_SYNC_FLUSH);
test_eq(buf2_datalen, 14*20);
for (i = 0; i < 20; ++i) {
test_memeq(buf2+(14*i), "Hello world. ", 14);
}
/* Now compress more, into less room. */
for (i = 0; i < 20; ++i) {
write_to_buf("Hello wxrlx. ", 14, &buf, &buflen, &buf_datalen);
}
i = compress_from_buf(str, 8, &buf, &buflen, &buf_datalen, comp,
Z_SYNC_FLUSH);
test_eq(buf_datalen, 0);
test_eq(i, 8);
memset(str+8,0,248);
j = compress_from_buf(str+8, 248, &buf, &buflen, &buf_datalen, comp,
Z_SYNC_FLUSH);
/* test_eq(j, 2); XXXX This breaks, see below. */
buf2_datalen=buf_datalen=0;
write_to_buf(str, i+j, &buf, &buflen, &buf_datalen);
memset(buf2, 0, buf2len);
j = decompress_buf_to_buf(&buf, &buflen, &buf_datalen,
&buf2, &buf2len, &buf2_datalen,
decomp, Z_SYNC_FLUSH);
test_eq(buf2_datalen, 14*20);
for (i = 0; i < 20; ++i) {
test_memeq(buf2+(14*i), "Hello wxrlx. ", 14);
}
/* This situation is a bit messy. We need to refactor our use of
* zlib until the above code works. Here's the problem: The zlib
* documentation claims that we should reinvoke deflate immediately
* when the outbuf buffer is full and we get Z_OK, without adjusting
* the input at all. This implies that we need to tie a buffer to a
* compression or decompression object.
*/
2003-04-07 15:25:44 +02:00
compression_free(comp);
decompression_free(decomp);
2003-04-07 15:25:44 +02:00
buf_free(buf);
buf_free(buf2);
2003-04-07 15:25:44 +02:00
}
void
test_crypto() {
crypto_cipher_env_t *env1, *env2;
crypto_pk_env_t *pk1, *pk2;
char *data1, *data2, *data3, *cp;
FILE *f;
int i, j;
int str_ciphers[] = { CRYPTO_CIPHER_IDENTITY,
CRYPTO_CIPHER_DES,
CRYPTO_CIPHER_RC4,
CRYPTO_CIPHER_3DES,
-1 };
2003-04-07 15:25:44 +02:00
data1 = malloc(1024);
data2 = malloc(1024);
data3 = malloc(1024);
test_assert(data1 && data2 && data3);
/* Try out identity ciphers. */
env1 = crypto_new_cipher_env(CRYPTO_CIPHER_IDENTITY);
test_neq(env1, 0);
test_eq(crypto_cipher_generate_key(env1), 0);
test_eq(crypto_cipher_set_iv(env1, ""), 0);
test_eq(crypto_cipher_encrypt_init_cipher(env1), 0);
for(i = 0; i < 1024; ++i) {
data1[i] = (char) i*73;
}
crypto_cipher_encrypt(env1, data1, 1024, data2);
test_memeq(data1, data2, 1024);
crypto_free_cipher_env(env1);
/* Now, test encryption and decryption with stream ciphers. */
data1[0]='\0';
for(i = 1023; i>0; i -= 35)
strncat(data1, "Now is the time for all good onions", i);
for(i=0; str_ciphers[i] >= 0; ++i) {
/* For each cipher... */
memset(data2, 0, 1024);
memset(data3, 0, 1024);
env1 = crypto_new_cipher_env(str_ciphers[i]);
test_neq(env1, 0);
env2 = crypto_new_cipher_env(str_ciphers[i]);
test_neq(env2, 0);
j = crypto_cipher_generate_key(env1);
if (str_ciphers[i] != CRYPTO_CIPHER_IDENTITY) {
crypto_cipher_set_key(env2, env1->key);
}
crypto_cipher_set_iv(env1, "12345678901234567890");
crypto_cipher_set_iv(env2, "12345678901234567890");
crypto_cipher_encrypt_init_cipher(env1);
crypto_cipher_decrypt_init_cipher(env2);
/* Try encrypting 512 chars. */
crypto_cipher_encrypt(env1, data1, 512, data2);
crypto_cipher_decrypt(env2, data2, 512, data3);
test_memeq(data1, data3, 512);
if (str_ciphers[i] == CRYPTO_CIPHER_IDENTITY) {
test_memeq(data1, data2, 512);
} else {
test_memneq(data1, data2, 512);
}
/* Now encrypt 1 at a time, and get 1 at a time. */
for (j = 512; j < 560; ++j) {
crypto_cipher_encrypt(env1, data1+j, 1, data2+j);
}
for (j = 512; j < 560; ++j) {
crypto_cipher_decrypt(env2, data2+j, 1, data3+j);
}
test_memeq(data1, data3, 560);
/* Now encrypt 3 at a time, and get 5 at a time. */
for (j = 560; j < 1024; j += 3) {
crypto_cipher_encrypt(env1, data1+j, 3, data2+j);
}
for (j = 560; j < 1024; j += 5) {
crypto_cipher_decrypt(env2, data2+j, 5, data3+j);
}
test_memeq(data1, data3, 1024-4);
/* Now make sure that when we encrypt with different chunk sizes, we get
the same results. */
crypto_free_cipher_env(env2);
memset(data3, 0, 1024);
env2 = crypto_new_cipher_env(str_ciphers[i]);
test_neq(env2, 0);
if (str_ciphers[i] != CRYPTO_CIPHER_IDENTITY) {
crypto_cipher_set_key(env2, env1->key);
}
crypto_cipher_set_iv(env2, "12345678901234567890");
crypto_cipher_encrypt_init_cipher(env2);
for (j = 0; j < 1024-16; j += 17) {
crypto_cipher_encrypt(env2, data1+j, 17, data3+j);
}
for (j= 0; j < 1024-16; ++j) {
if (data2[j] != data3[j]) {
printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
}
}
test_memeq(data2, data3, 1024-16);
crypto_free_cipher_env(env1);
crypto_free_cipher_env(env2);
}
/* Test vectors for stream ciphers. */
/* XXXX Look up some test vectors for the ciphers and make sure we match. */
/* Test SHA-1 with a test vector from the specification. */
i = crypto_SHA_digest("abc", 3, data1);
test_memeq(data1,
"\xA9\x99\x3E\x36\x47\x06\x81\x6A\xBA\x3E\x25\x71\x78"
"\x50\xC2\x6C\x9C\xD0\xD8\x9D", 20);
/* Public-key ciphers */
pk1 = crypto_new_pk_env(CRYPTO_PK_RSA);
pk2 = crypto_new_pk_env(CRYPTO_PK_RSA);
test_assert(pk1 && pk2);
test_assert(! crypto_pk_generate_key(pk1));
test_assert(! crypto_pk_write_public_key_to_string(pk1, &cp, &i));
test_assert(! crypto_pk_read_public_key_from_string(pk2, cp, i));
test_eq(0, crypto_pk_cmp_keys(pk1, pk2));
test_eq(128, crypto_pk_keysize(pk1));
test_eq(128, crypto_pk_keysize(pk2));
test_eq(128, crypto_pk_public_encrypt(pk2, "Hello whirled.", 15, data1,
RSA_PKCS1_OAEP_PADDING));
test_eq(128, crypto_pk_public_encrypt(pk1, "Hello whirled.", 15, data2,
RSA_PKCS1_OAEP_PADDING));
/* oaep padding should make encryption not match */
test_memneq(data1, data2, 128);
test_eq(15, crypto_pk_private_decrypt(pk1, data1, 128, data3,
RSA_PKCS1_OAEP_PADDING));
test_streq(data3, "Hello whirled.");
memset(data3, 0, 1024);
test_eq(15, crypto_pk_private_decrypt(pk1, data2, 128, data3,
RSA_PKCS1_OAEP_PADDING));
test_streq(data3, "Hello whirled.");
/* Can't decrypt with public key. */
test_eq(-1, crypto_pk_private_decrypt(pk2, data2, 128, data3,
RSA_PKCS1_OAEP_PADDING));
/* Try again with bad padding */
memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
test_eq(-1, crypto_pk_private_decrypt(pk1, data2, 128, data3,
RSA_PKCS1_OAEP_PADDING));
/* File operations: save and load private key */
f = fopen("/tmp/tor_test/pkey1", "wb");
test_assert(! crypto_pk_write_private_key_to_file(pk1, f));
fclose(f);
f = fopen("/tmp/tor_test/pkey1", "rb");
test_assert(! crypto_pk_read_private_key_from_file(pk2, f));
fclose(f);
test_eq(15, crypto_pk_private_decrypt(pk2, data1, 128, data3,
RSA_PKCS1_OAEP_PADDING));
test_assert(! crypto_pk_read_private_key_from_filename(pk2,
"/tmp/tor_test/pkey1"));
test_eq(15, crypto_pk_private_decrypt(pk2, data1, 128, data3,
RSA_PKCS1_OAEP_PADDING));
crypto_free_pk_env(pk1);
crypto_free_pk_env(pk2);
free(data1);
free(data2);
free(data3);
2003-04-07 15:25:44 +02:00
}
void
test_util() {
struct timeval start, end;
start.tv_sec = 5;
start.tv_usec = 5000;
end.tv_sec = 5;
end.tv_usec = 5000;
test_eq(0L, tv_udiff(&start, &end));
end.tv_usec = 7000;
test_eq(2000L, tv_udiff(&start, &end));
end.tv_sec = 6;
test_eq(1002000L, tv_udiff(&start, &end));
end.tv_usec = 0;
test_eq(995000L, tv_udiff(&start, &end));
end.tv_sec = 4;
test_eq(0L, tv_udiff(&start, &end));
}
int
main(int c, char**v) {
#if 0
or_options_t options; /* command-line and config-file options */
if(getconfig(c,v,&options))
exit(1);
#endif
log(LOG_ERR,NULL); /* make logging quieter */
setup_directory();
puts("========================== Buffers =========================");
test_buffers();
puts("========================== Crypto ==========================");
test_crypto(); /* this seg faults :( */
puts("\n========================== Util ============================");
test_util();
puts("");
return 0;
}
/*
Local Variables:
mode:c
indent-tabs-mode:nil
c-basic-offset:2
End:
*/