tor/src/or/rephist.c

364 lines
11 KiB
C
Raw Normal View History

/* Copyright 2004 Roger Dingledine */
/* See LICENSE for licensing information */
/* $Id$ */
2004-05-10 06:34:48 +02:00
/**
* \file rephist.c
* \brief Basic history functionality for reputation module.
**/
#include "or.h"
2004-05-10 06:34:48 +02:00
/** History of an OR-\>OR link. */
typedef struct link_history_t {
2004-05-10 06:34:48 +02:00
/** When did we start tracking this list? */
time_t since;
2004-05-10 06:34:48 +02:00
/** How many times did extending from OR1 to OR2 succeeed? */
unsigned long n_extend_ok;
2004-05-10 06:34:48 +02:00
/** How many times did extending from OR1 to OR2 fail? */
unsigned long n_extend_fail;
} link_history_t;
2004-05-10 06:34:48 +02:00
/** History of an OR. */
typedef struct or_history_t {
2004-05-10 06:34:48 +02:00
/** When did we start tracking this OR? */
time_t since;
2004-05-10 06:34:48 +02:00
/** How many times did we successfully connect? */
unsigned long n_conn_ok;
2004-05-10 06:34:48 +02:00
/** How many times did we try to connect and fail?*/
unsigned long n_conn_fail;
2004-05-10 06:34:48 +02:00
/** How many seconds have we been connected to this OR before
* 'up_since'? */
unsigned long uptime;
2004-05-10 06:34:48 +02:00
/** How many seconds have we been unable to connect to this OR before
* 'down_since'? */
unsigned long downtime;
2004-05-10 06:34:48 +02:00
/** If nonzero, we have been connected since this time. */
time_t up_since;
2004-05-10 06:34:48 +02:00
/** If nonzero, we have been unable to connect since this time. */
time_t down_since;
2004-07-17 00:23:18 +02:00
/** Map from hex OR2 identity digest to a link_history_t for the link
* from this OR to OR2. */
strmap_t *link_history_map;
} or_history_t;
2004-07-17 00:23:18 +02:00
/** Map from hex OR identity digest to or_history_t. */
static strmap_t *history_map = NULL;
2004-05-10 06:34:48 +02:00
/** Return the or_history_t for the named OR, creating it if necessary.
*/
static or_history_t *get_or_history(const char* id)
{
or_history_t *hist;
char hexid[HEX_DIGEST_LEN+1];
base16_encode(hexid, HEX_DIGEST_LEN+1, id, DIGEST_LEN);
hist = (or_history_t*) strmap_get(history_map, hexid);
if (!hist) {
hist = tor_malloc_zero(sizeof(or_history_t));
hist->link_history_map = strmap_new();
hist->since = time(NULL);
strmap_set(history_map, hexid, hist);
}
return hist;
}
2004-05-10 06:34:48 +02:00
/** Return the link_history_t for the link from the first named OR to
2004-07-17 00:23:18 +02:00
* the second, creating it if necessary. (ORs are identified by
* identity digest)
*/
static link_history_t *get_link_history(const char *from_id,
const char *to_id)
{
or_history_t *orhist;
link_history_t *lhist;
char to_hexid[HEX_DIGEST_LEN+1];
orhist = get_or_history(from_id);
base16_encode(to_hexid, HEX_DIGEST_LEN+1, to_id, DIGEST_LEN);
lhist = (link_history_t*) strmap_get(orhist->link_history_map, to_hexid);
if (!lhist) {
lhist = tor_malloc_zero(sizeof(link_history_t));
lhist->since = time(NULL);
strmap_set(orhist->link_history_map, to_hexid, lhist);
}
return lhist;
}
2004-05-10 06:34:48 +02:00
/** Update an or_history_t object <b>hist</b> so that its uptime/downtime
* count is up-to-date as of <b>when</b>.
*/
static void update_or_history(or_history_t *hist, time_t when)
{
tor_assert(hist);
if (hist->up_since) {
tor_assert(!hist->down_since);
hist->uptime += (when - hist->up_since);
hist->up_since = when;
} else if (hist->down_since) {
hist->downtime += (when - hist->down_since);
hist->down_since = when;
}
}
2004-05-10 06:34:48 +02:00
/** Initialize the static data structures for tracking history.
*/
void rep_hist_init(void)
{
history_map = strmap_new();
}
2004-07-17 00:23:18 +02:00
/** Remember that an attempt to connect to the OR with identity digest
* <b>id</b> failed at <b>when</b>.
*/
void rep_hist_note_connect_failed(const char* id, time_t when)
{
or_history_t *hist;
hist = get_or_history(id);
++hist->n_conn_fail;
if (hist->up_since) {
hist->uptime += (when - hist->up_since);
hist->up_since = 0;
}
if (!hist->down_since)
hist->down_since = when;
}
2004-07-17 00:23:18 +02:00
/** Remember that an attempt to connect to the OR with identity digest
* <b>id</b> succeeded at <b>when</b>.
*/
void rep_hist_note_connect_succeeded(const char* id, time_t when)
{
or_history_t *hist;
hist = get_or_history(id);
++hist->n_conn_ok;
if (hist->down_since) {
hist->downtime += (when - hist->down_since);
hist->down_since = 0;
}
if (!hist->up_since)
hist->up_since = when;
}
2004-05-10 06:34:48 +02:00
/** Remember that we intentionally closed our connection to the OR
2004-07-17 00:23:18 +02:00
* with identity digest <b>id</b> at <b>when</b>.
*/
void rep_hist_note_disconnect(const char* id, time_t when)
{
or_history_t *hist;
hist = get_or_history(id);
++hist->n_conn_ok;
if (hist->up_since) {
hist->uptime += (when - hist->up_since);
hist->up_since = 0;
}
}
2004-07-17 00:23:18 +02:00
/** Remember that our connection to the OR with identity digest
* <b>id</b> had an error and stopped working at <b>when</b>.
*/
void rep_hist_note_connection_died(const char* id, time_t when)
{
or_history_t *hist;
if(!id) {
/* XXXX008 not so. */
2004-05-18 17:35:21 +02:00
/* If conn has no nickname, it's either an OP, or it is an OR
* which didn't complete its handshake (or did and was unapproved).
2004-05-18 17:35:21 +02:00
* Ignore it.
*/
return;
}
hist = get_or_history(id);
if (hist->up_since) {
hist->uptime += (when - hist->up_since);
hist->up_since = 0;
}
if (!hist->down_since)
hist->down_since = when;
}
2004-07-17 00:23:18 +02:00
/** Remember that we successfully extended from the OR with identity
* digest <b>from_id</b> to the OR with identity digest
* <b>to_name</b>.
*/
void rep_hist_note_extend_succeeded(const char *from_id,
const char *to_id)
{
link_history_t *hist;
/* log_fn(LOG_WARN, "EXTEND SUCCEEDED: %s->%s",from_name,to_name); */
hist = get_link_history(from_id, to_id);
++hist->n_extend_ok;
}
2004-07-17 00:23:18 +02:00
/** Remember that we tried to extend from the OR with identity digest
* <b>from_id</b> to the OR with identity digest <b>to_name</b>, but
* failed.
*/
void rep_hist_note_extend_failed(const char *from_id, const char *to_id)
{
link_history_t *hist;
/* log_fn(LOG_WARN, "EXTEND FAILED: %s->%s",from_name,to_name); */
hist = get_link_history(from_id, to_id);
++hist->n_extend_fail;
}
2004-05-10 06:34:48 +02:00
/** Log all the reliability data we have rememberred, with the chosen
* severity.
*/
void rep_hist_dump_stats(time_t now, int severity)
{
strmap_iter_t *lhist_it;
strmap_iter_t *orhist_it;
const char *name1, *name2, *hexdigest1, *hexdigest2;
or_history_t *or_history;
link_history_t *link_history;
void *or_history_p, *link_history_p;
double uptime;
char buffer[2048];
int len;
unsigned long upt, downt;
routerinfo_t *r;
log(severity, "--------------- Dumping history information:");
for (orhist_it = strmap_iter_init(history_map); !strmap_iter_done(orhist_it);
orhist_it = strmap_iter_next(history_map,orhist_it)) {
strmap_iter_get(orhist_it, &hexdigest1, &or_history_p);
or_history = (or_history_t*) or_history_p;
if ((r = router_get_by_hexdigest(hexdigest1)))
name1 = r->nickname;
else
name1 = "(unknown)";
update_or_history(or_history, now);
upt = or_history->uptime;
downt = or_history->downtime;
if (upt+downt) {
uptime = ((double)upt) / (upt+downt);
} else {
uptime=1.0;
}
log(severity,
"OR %s [%s]: %ld/%ld good connections; uptime %ld/%ld sec (%.2f%%)",
name1, hexdigest1,
2004-04-03 04:14:20 +02:00
or_history->n_conn_ok, or_history->n_conn_fail+or_history->n_conn_ok,
upt, upt+downt, uptime*100.0);
strcpy(buffer, " Good extend attempts: ");
len = strlen(buffer);
for (lhist_it = strmap_iter_init(or_history->link_history_map);
2004-04-03 04:14:20 +02:00
!strmap_iter_done(lhist_it);
lhist_it = strmap_iter_next(or_history->link_history_map, lhist_it)) {
strmap_iter_get(lhist_it, &hexdigest2, &link_history_p);
if ((r = router_get_by_hexdigest(hexdigest2)))
name2 = r->nickname;
else
name2 = "(unknown)";
link_history = (link_history_t*) link_history_p;
len += snprintf(buffer+len, 2048-len, "%s(%ld/%ld); ", name2,
2004-04-03 04:14:20 +02:00
link_history->n_extend_ok,
link_history->n_extend_ok+link_history->n_extend_fail);
if (len >= 2048) {
2004-04-03 04:14:20 +02:00
buffer[2047]='\0';
break;
}
}
log(severity, buffer);
}
}
#if 0
void write_rep_history(const char *filename)
{
FILE *f = NULL;
char *tmpfile;
int completed = 0;
or_history_t *or_history;
link_history_t *link_history;
strmap_iter_t *lhist_it;
strmap_iter_t *orhist_it;
void *or_history_p, *link_history_p;
const char *name1;
tmpfile = tor_malloc(strlen(filename)+5);
strcpy(tmpfile, filename);
strcat(tmpfile, "_tmp");
f = fopen(tmpfile, "w");
if (!f) goto done;
for (orhist_it = strmap_iter_init(history_map); !strmap_iter_done(orhist_it);
orhist_it = strmap_iter_next(history_map,orhist_it)) {
strmap_iter_get(orhist_it, &name1, &or_history_p);
or_history = (or_history_t*) or_history_p;
fprintf(f, "link %s connected:u%ld failed:%uld uptime:%uld",
name1, or_history->since1,
}
done:
if (f)
fclose(f);
if (completed)
replace_file(filename, tmpfile);
else
unlink(tmpfile);
tor_free(tmpfile);
}
#endif
#define NUM_SECS_ROLLING_MEASURE 10
#define NUM_SECS_BW_SUM_IS_VALID (12*60*60) /* half a day */
/** We read <b>num_bytes</b> more bytes in second <b>when</b>.
*
* Add num_bytes to the current running total for <b>when</b>.
*
* <b>when</b> can go back to time, but it's safe to ignore calls
* earlier than the latest <b>when</b> you've heard of.
*/
void rep_hist_note_bytes_written(int num_bytes, time_t when) {
/* Maybe a circular array for recent seconds, and step to a new point
* every time a new second shows up. Or simpler is to just to have
* a normal array and push down each item every second; it's short.
*/
/* When a new second has rolled over, compute the sum of the bytes we've
* seen over when-1 to when-1-NUM_SECS_ROLLING_MEASURE, and stick it
* somewhere. See rep_hist_bandwidth_assess() below.
*/
}
/** We wrote <b>num_bytes</b> more bytes in second <b>when</b>.
* (like rep_hist_note_bytes_written() above)
*/
void rep_hist_note_bytes_read(int num_bytes, time_t when) {
/* if we're smart, we can make this func and the one above share code */
}
/**
* Find the largest sums in the past NUM_SECS_BW_SUM_IS_VALID (roughly)
* seconds. Find one sum for reading and one for writing. They don't have
* to be at the same time).
*
* Return the smaller of these sums, divided by NUM_SECS_ROLLING_MEASURE.
*/
int rep_hist_bandwidth_assess(time_t when) {
/* To get a handle on space complexity, I promise I will call this
* function at most every options.DirFetchPostPeriod seconds. So in
* rep_hist_note_bytes_foo() above, you could keep a running max sum
* for the current period, and when the period ends you can tuck its max away
* in a circular array of more managable size. We lose a bit of precision,
* but this is all guesswork anyway.
*/
return 0;
}
/*
Local Variables:
mode:c
indent-tabs-mode:nil
c-basic-offset:2
End:
*/