tor/src/or/hs_cell.c

890 lines
33 KiB
C
Raw Normal View History

/* Copyright (c) 2017, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file hs_cell.c
* \brief Hidden service API for cell creation and handling.
**/
#include "or.h"
#include "config.h"
#include "rendservice.h"
#include "replaycache.h"
#include "util.h"
#include "hs_cell.h"
#include "hs_ntor.h"
/* Trunnel. */
#include "ed25519_cert.h"
#include "hs/cell_common.h"
#include "hs/cell_establish_intro.h"
#include "hs/cell_introduce1.h"
#include "hs/cell_rendezvous.h"
/* Compute the MAC of an INTRODUCE cell in mac_out. The encoded_cell param is
* the cell content up to the ENCRYPTED section of length encoded_cell_len.
* The encrypted param is the start of the ENCRYPTED section of length
* encrypted_len. The mac_key is the key needed for the computation of the MAC
* derived from the ntor handshake of length mac_key_len.
*
* The length mac_out_len must be at least DIGEST256_LEN. */
static void
compute_introduce_mac(const uint8_t *encoded_cell, size_t encoded_cell_len,
const uint8_t *encrypted, size_t encrypted_len,
const uint8_t *mac_key, size_t mac_key_len,
uint8_t *mac_out, size_t mac_out_len)
{
size_t offset = 0;
size_t mac_msg_len;
uint8_t mac_msg[RELAY_PAYLOAD_SIZE] = {0};
tor_assert(encoded_cell);
tor_assert(encrypted);
tor_assert(mac_key);
tor_assert(mac_out);
tor_assert(mac_out_len >= DIGEST256_LEN);
/* Compute the size of the message which is basically the entire cell until
* the MAC field of course. */
mac_msg_len = encoded_cell_len + (encrypted_len - DIGEST256_LEN);
tor_assert(mac_msg_len <= sizeof(mac_msg));
/* First, put the encoded cell in the msg. */
memcpy(mac_msg, encoded_cell, encoded_cell_len);
offset += encoded_cell_len;
/* Second, put the CLIENT_PK + ENCRYPTED_DATA but ommit the MAC field (which
* is junk at this point). */
memcpy(mac_msg + offset, encrypted, (encrypted_len - DIGEST256_LEN));
offset += (encrypted_len - DIGEST256_LEN);
tor_assert(offset == mac_msg_len);
crypto_mac_sha3_256(mac_out, mac_out_len,
mac_key, mac_key_len,
mac_msg, mac_msg_len);
memwipe(mac_msg, 0, sizeof(mac_msg));
}
/* From a set of keys, subcredential and the ENCRYPTED section of an
* INTRODUCE2 cell, return a newly allocated intro cell keys structure.
* Finally, the client public key is copied in client_pk. On error, return
* NULL. */
static hs_ntor_intro_cell_keys_t *
get_introduce2_key_material(const ed25519_public_key_t *auth_key,
const curve25519_keypair_t *enc_key,
const uint8_t *subcredential,
const uint8_t *encrypted_section,
curve25519_public_key_t *client_pk)
{
hs_ntor_intro_cell_keys_t *keys;
tor_assert(auth_key);
tor_assert(enc_key);
tor_assert(subcredential);
tor_assert(encrypted_section);
tor_assert(client_pk);
keys = tor_malloc_zero(sizeof(*keys));
/* First bytes of the ENCRYPTED section are the client public key. */
memcpy(client_pk->public_key, encrypted_section, CURVE25519_PUBKEY_LEN);
if (hs_ntor_service_get_introduce1_keys(auth_key, enc_key, client_pk,
subcredential, keys) < 0) {
/* Don't rely on the caller to wipe this on error. */
memwipe(client_pk, 0, sizeof(curve25519_public_key_t));
tor_free(keys);
keys = NULL;
}
return keys;
}
/* Using the given encryption key, decrypt the encrypted_section of length
* encrypted_section_len of an INTRODUCE2 cell and return a newly allocated
* buffer containing the decrypted data. On decryption failure, NULL is
* returned. */
static uint8_t *
decrypt_introduce2(const uint8_t *enc_key, const uint8_t *encrypted_section,
size_t encrypted_section_len)
{
uint8_t *decrypted = NULL;
crypto_cipher_t *cipher = NULL;
tor_assert(enc_key);
tor_assert(encrypted_section);
/* Decrypt ENCRYPTED section. */
cipher = crypto_cipher_new_with_bits((char *) enc_key,
CURVE25519_PUBKEY_LEN * 8);
tor_assert(cipher);
/* This is symmetric encryption so can't be bigger than the encrypted
* section length. */
decrypted = tor_malloc_zero(encrypted_section_len);
if (crypto_cipher_decrypt(cipher, (char *) decrypted,
(const char *) encrypted_section,
encrypted_section_len) < 0) {
tor_free(decrypted);
decrypted = NULL;
goto done;
}
done:
crypto_cipher_free(cipher);
return decrypted;
}
/* Given a pointer to the decrypted data of the ENCRYPTED section of an
* INTRODUCE2 cell of length decrypted_len, parse and validate the cell
* content. Return a newly allocated cell structure or NULL on error. The
* circuit and service object are only used for logging purposes. */
static trn_cell_introduce_encrypted_t *
parse_introduce2_encrypted(const uint8_t *decrypted_data,
size_t decrypted_len, const origin_circuit_t *circ,
const hs_service_t *service)
{
trn_cell_introduce_encrypted_t *enc_cell = NULL;
tor_assert(decrypted_data);
tor_assert(circ);
tor_assert(service);
if (trn_cell_introduce_encrypted_parse(&enc_cell, decrypted_data,
decrypted_len) < 0) {
log_info(LD_REND, "Unable to parse the decrypted ENCRYPTED section of "
"the INTRODUCE2 cell on circuit %u for service %s",
TO_CIRCUIT(circ)->n_circ_id,
safe_str_client(service->onion_address));
goto err;
}
if (trn_cell_introduce_encrypted_get_onion_key_type(enc_cell) !=
HS_CELL_ONION_KEY_TYPE_NTOR) {
log_info(LD_REND, "INTRODUCE2 onion key type is invalid. Got %u but "
"expected %u on circuit %u for service %s",
trn_cell_introduce_encrypted_get_onion_key_type(enc_cell),
HS_CELL_ONION_KEY_TYPE_NTOR, TO_CIRCUIT(circ)->n_circ_id,
safe_str_client(service->onion_address));
goto err;
}
if (trn_cell_introduce_encrypted_getlen_onion_key(enc_cell) !=
CURVE25519_PUBKEY_LEN) {
log_info(LD_REND, "INTRODUCE2 onion key length is invalid. Got %u but "
"expected %d on circuit %u for service %s",
(unsigned)trn_cell_introduce_encrypted_getlen_onion_key(enc_cell),
CURVE25519_PUBKEY_LEN, TO_CIRCUIT(circ)->n_circ_id,
safe_str_client(service->onion_address));
goto err;
}
/* XXX: Validate NSPEC field as well. */
return enc_cell;
err:
trn_cell_introduce_encrypted_free(enc_cell);
return NULL;
}
/* Build a legacy ESTABLISH_INTRO cell with the given circuit nonce and RSA
* encryption key. The encoded cell is put in cell_out that MUST at least be
* of the size of RELAY_PAYLOAD_SIZE. Return the encoded cell length on
* success else a negative value and cell_out is untouched. */
static ssize_t
build_legacy_establish_intro(const char *circ_nonce, crypto_pk_t *enc_key,
uint8_t *cell_out)
{
ssize_t cell_len;
tor_assert(circ_nonce);
tor_assert(enc_key);
tor_assert(cell_out);
2017-08-03 14:42:30 +02:00
memwipe(cell_out, 0, RELAY_PAYLOAD_SIZE);
cell_len = rend_service_encode_establish_intro_cell((char*)cell_out,
RELAY_PAYLOAD_SIZE,
enc_key, circ_nonce);
return cell_len;
}
/* Parse an INTRODUCE2 cell from payload of size payload_len for the given
* service and circuit which are used only for logging purposes. The resulting
* parsed cell is put in cell_ptr_out.
*
* This function only parses prop224 INTRODUCE2 cells even when the intro point
* is a legacy intro point. That's because intro points don't actually care
* about the contents of the introduce cell. Legacy INTRODUCE cells are only
* used by the legacy system now.
*
* Return 0 on success else a negative value and cell_ptr_out is untouched. */
static int
parse_introduce2_cell(const hs_service_t *service,
const origin_circuit_t *circ, const uint8_t *payload,
size_t payload_len,
trn_cell_introduce1_t **cell_ptr_out)
{
trn_cell_introduce1_t *cell = NULL;
tor_assert(service);
tor_assert(circ);
tor_assert(payload);
tor_assert(cell_ptr_out);
/* Parse the cell so we can start cell validation. */
if (trn_cell_introduce1_parse(&cell, payload, payload_len) < 0) {
log_info(LD_PROTOCOL, "Unable to parse INTRODUCE2 cell on circuit %u "
"for service %s",
TO_CIRCUIT(circ)->n_circ_id,
safe_str_client(service->onion_address));
goto err;
}
/* Success. */
*cell_ptr_out = cell;
return 0;
err:
return -1;
}
/* Set the onion public key onion_pk in cell, the encrypted section of an
* INTRODUCE1 cell. */
static void
introduce1_set_encrypted_onion_key(trn_cell_introduce_encrypted_t *cell,
const uint8_t *onion_pk)
{
tor_assert(cell);
tor_assert(onion_pk);
/* There is only one possible key type for a non legacy cell. */
trn_cell_introduce_encrypted_set_onion_key_type(cell,
HS_CELL_ONION_KEY_TYPE_NTOR);
trn_cell_introduce_encrypted_set_onion_key_len(cell, CURVE25519_PUBKEY_LEN);
trn_cell_introduce_encrypted_setlen_onion_key(cell, CURVE25519_PUBKEY_LEN);
memcpy(trn_cell_introduce_encrypted_getarray_onion_key(cell), onion_pk,
trn_cell_introduce_encrypted_getlen_onion_key(cell));
}
/* Set the link specifiers in lspecs in cell, the encrypted section of an
* INTRODUCE1 cell. */
static void
introduce1_set_encrypted_link_spec(trn_cell_introduce_encrypted_t *cell,
const smartlist_t *lspecs)
{
tor_assert(cell);
tor_assert(lspecs);
tor_assert(smartlist_len(lspecs) > 0);
tor_assert(smartlist_len(lspecs) <= UINT8_MAX);
uint8_t lspecs_num = (uint8_t) smartlist_len(lspecs);
trn_cell_introduce_encrypted_set_nspec(cell, lspecs_num);
/* We aren't duplicating the link specifiers object here which means that
* the ownership goes to the trn_cell_introduce_encrypted_t cell and those
* object will be freed when the cell is. */
SMARTLIST_FOREACH(lspecs, link_specifier_t *, ls,
trn_cell_introduce_encrypted_add_nspecs(cell, ls));
}
/* Set padding in the enc_cell only if needed that is the total length of both
* sections are below the mininum required for an INTRODUCE1 cell. */
static void
introduce1_set_encrypted_padding(const trn_cell_introduce1_t *cell,
trn_cell_introduce_encrypted_t *enc_cell)
{
tor_assert(cell);
tor_assert(enc_cell);
/* This is the length we expect to have once encoded of the whole cell. */
ssize_t full_len = trn_cell_introduce1_encoded_len(cell) +
trn_cell_introduce_encrypted_encoded_len(enc_cell);
tor_assert(full_len > 0);
if (full_len < HS_CELL_INTRODUCE1_MIN_SIZE) {
size_t padding = HS_CELL_INTRODUCE1_MIN_SIZE - full_len;
trn_cell_introduce_encrypted_setlen_pad(enc_cell, padding);
memset(trn_cell_introduce_encrypted_getarray_pad(enc_cell), 0,
trn_cell_introduce_encrypted_getlen_pad(enc_cell));
}
}
/* Encrypt the ENCRYPTED payload and encode it in the cell using the enc_cell
* and the INTRODUCE1 data.
*
* This can't fail but it is very important that the caller sets every field
* in data so the computation of the INTRODUCE1 keys doesn't fail. */
static void
introduce1_encrypt_and_encode(trn_cell_introduce1_t *cell,
const trn_cell_introduce_encrypted_t *enc_cell,
const hs_cell_introduce1_data_t *data)
{
size_t offset = 0;
ssize_t encrypted_len;
ssize_t encoded_cell_len, encoded_enc_cell_len;
uint8_t encoded_cell[RELAY_PAYLOAD_SIZE] = {0};
uint8_t encoded_enc_cell[RELAY_PAYLOAD_SIZE] = {0};
uint8_t *encrypted = NULL;
uint8_t mac[DIGEST256_LEN];
crypto_cipher_t *cipher = NULL;
hs_ntor_intro_cell_keys_t keys;
tor_assert(cell);
tor_assert(enc_cell);
tor_assert(data);
/* Encode the cells up to now of what we have to we can perform the MAC
* computation on it. */
encoded_cell_len = trn_cell_introduce1_encode(encoded_cell,
sizeof(encoded_cell), cell);
/* We have a much more serious issue if this isn't true. */
tor_assert(encoded_cell_len > 0);
encoded_enc_cell_len =
trn_cell_introduce_encrypted_encode(encoded_enc_cell,
sizeof(encoded_enc_cell), enc_cell);
/* We have a much more serious issue if this isn't true. */
tor_assert(encoded_enc_cell_len > 0);
/* Get the key material for the encryption. */
if (hs_ntor_client_get_introduce1_keys(data->auth_pk, data->enc_pk,
data->client_kp,
data->subcredential, &keys) < 0) {
tor_assert_unreached();
}
/* Prepare cipher with the encryption key just computed. */
cipher = crypto_cipher_new_with_bits((const char *) keys.enc_key,
sizeof(keys.enc_key) * 8);
tor_assert(cipher);
/* Compute the length of the ENCRYPTED section which is the CLIENT_PK,
* ENCRYPTED_DATA and MAC length. */
encrypted_len = sizeof(data->client_kp->pubkey) + encoded_enc_cell_len +
sizeof(mac);
tor_assert(encrypted_len < RELAY_PAYLOAD_SIZE);
encrypted = tor_malloc_zero(encrypted_len);
/* Put the CLIENT_PK first. */
memcpy(encrypted, data->client_kp->pubkey.public_key,
sizeof(data->client_kp->pubkey.public_key));
offset += sizeof(data->client_kp->pubkey.public_key);
/* Then encrypt and set the ENCRYPTED_DATA. This can't fail. */
crypto_cipher_encrypt(cipher, (char *) encrypted + offset,
(const char *) encoded_enc_cell, encoded_enc_cell_len);
crypto_cipher_free(cipher);
offset += encoded_enc_cell_len;
/* Compute MAC from the above and put it in the buffer. This function will
* make the adjustment to the encryptled_len to ommit the MAC length. */
compute_introduce_mac(encoded_cell, encoded_cell_len,
encrypted, encrypted_len,
keys.mac_key, sizeof(keys.mac_key),
mac, sizeof(mac));
memcpy(encrypted + offset, mac, sizeof(mac));
offset += sizeof(mac);
tor_assert(offset == (size_t) encrypted_len);
/* Set the ENCRYPTED section in the cell. */
trn_cell_introduce1_setlen_encrypted(cell, encrypted_len);
memcpy(trn_cell_introduce1_getarray_encrypted(cell),
encrypted, encrypted_len);
/* Cleanup. */
memwipe(&keys, 0, sizeof(keys));
memwipe(mac, 0, sizeof(mac));
memwipe(encrypted, 0, sizeof(encrypted_len));
memwipe(encoded_enc_cell, 0, sizeof(encoded_enc_cell));
tor_free(encrypted);
}
/* Using the INTRODUCE1 data, setup the ENCRYPTED section in cell. This means
* set it, encrypt it and encode it. */
static void
introduce1_set_encrypted(trn_cell_introduce1_t *cell,
const hs_cell_introduce1_data_t *data)
{
trn_cell_introduce_encrypted_t *enc_cell;
trn_cell_extension_t *ext;
tor_assert(cell);
tor_assert(data);
enc_cell = trn_cell_introduce_encrypted_new();
tor_assert(enc_cell);
/* Set extension data. None are used. */
ext = trn_cell_extension_new();
tor_assert(ext);
trn_cell_extension_set_num(ext, 0);
trn_cell_introduce_encrypted_set_extensions(enc_cell, ext);
/* Set the rendezvous cookie. */
memcpy(trn_cell_introduce_encrypted_getarray_rend_cookie(enc_cell),
data->rendezvous_cookie, REND_COOKIE_LEN);
/* Set the onion public key. */
introduce1_set_encrypted_onion_key(enc_cell, data->onion_pk->public_key);
/* Set the link specifiers. */
introduce1_set_encrypted_link_spec(enc_cell, data->link_specifiers);
/* Set padding. */
introduce1_set_encrypted_padding(cell, enc_cell);
/* Encrypt and encode it in the cell. */
introduce1_encrypt_and_encode(cell, enc_cell, data);
/* Cleanup. */
trn_cell_introduce_encrypted_free(enc_cell);
}
/* Set the authentication key in the INTRODUCE1 cell from the given data. */
static void
introduce1_set_auth_key(trn_cell_introduce1_t *cell,
const hs_cell_introduce1_data_t *data)
{
tor_assert(cell);
tor_assert(data);
/* There is only one possible type for a non legacy cell. */
trn_cell_introduce1_set_auth_key_type(cell, HS_INTRO_AUTH_KEY_TYPE_ED25519);
trn_cell_introduce1_set_auth_key_len(cell, ED25519_PUBKEY_LEN);
trn_cell_introduce1_setlen_auth_key(cell, ED25519_PUBKEY_LEN);
memcpy(trn_cell_introduce1_getarray_auth_key(cell),
data->auth_pk->pubkey, trn_cell_introduce1_getlen_auth_key(cell));
}
/* Set the legacy ID field in the INTRODUCE1 cell from the given data. */
static void
introduce1_set_legacy_id(trn_cell_introduce1_t *cell,
const hs_cell_introduce1_data_t *data)
{
tor_assert(cell);
tor_assert(data);
if (data->is_legacy) {
uint8_t digest[DIGEST_LEN];
if (BUG(crypto_pk_get_digest(data->legacy_key, (char *) digest) < 0)) {
return;
}
memcpy(trn_cell_introduce1_getarray_legacy_key_id(cell),
digest, trn_cell_introduce1_getlen_legacy_key_id(cell));
} else {
/* We have to zeroed the LEGACY_KEY_ID field. */
memset(trn_cell_introduce1_getarray_legacy_key_id(cell), 0,
trn_cell_introduce1_getlen_legacy_key_id(cell));
}
}
/* ========== */
/* Public API */
/* ========== */
/* Build an ESTABLISH_INTRO cell with the given circuit nonce and intro point
* object. The encoded cell is put in cell_out that MUST at least be of the
* size of RELAY_PAYLOAD_SIZE. Return the encoded cell length on success else
* a negative value and cell_out is untouched. This function also supports
* legacy cell creation. */
ssize_t
hs_cell_build_establish_intro(const char *circ_nonce,
const hs_service_intro_point_t *ip,
uint8_t *cell_out)
{
ssize_t cell_len = -1;
uint16_t sig_len = ED25519_SIG_LEN;
trn_cell_extension_t *ext;
trn_cell_establish_intro_t *cell = NULL;
tor_assert(circ_nonce);
tor_assert(ip);
/* Quickly handle the legacy IP. */
if (ip->base.is_only_legacy) {
tor_assert(ip->legacy_key);
cell_len = build_legacy_establish_intro(circ_nonce, ip->legacy_key,
cell_out);
tor_assert(cell_len <= RELAY_PAYLOAD_SIZE);
/* Success or not we are done here. */
goto done;
}
/* Set extension data. None used here. */
ext = trn_cell_extension_new();
trn_cell_extension_set_num(ext, 0);
cell = trn_cell_establish_intro_new();
trn_cell_establish_intro_set_extensions(cell, ext);
/* Set signature size. Array is then allocated in the cell. We need to do
* this early so we can use trunnel API to get the signature length. */
trn_cell_establish_intro_set_sig_len(cell, sig_len);
trn_cell_establish_intro_setlen_sig(cell, sig_len);
/* Set AUTH_KEY_TYPE: 2 means ed25519 */
trn_cell_establish_intro_set_auth_key_type(cell,
HS_INTRO_AUTH_KEY_TYPE_ED25519);
/* Set AUTH_KEY and AUTH_KEY_LEN field. Must also set byte-length of
* AUTH_KEY to match */
{
uint16_t auth_key_len = ED25519_PUBKEY_LEN;
trn_cell_establish_intro_set_auth_key_len(cell, auth_key_len);
trn_cell_establish_intro_setlen_auth_key(cell, auth_key_len);
/* We do this call _after_ setting the length because it's reallocated at
* that point only. */
uint8_t *auth_key_ptr = trn_cell_establish_intro_getarray_auth_key(cell);
memcpy(auth_key_ptr, ip->auth_key_kp.pubkey.pubkey, auth_key_len);
}
/* Calculate HANDSHAKE_AUTH field (MAC). */
{
ssize_t tmp_cell_enc_len = 0;
ssize_t tmp_cell_mac_offset =
sig_len + sizeof(cell->sig_len) +
trn_cell_establish_intro_getlen_handshake_mac(cell);
uint8_t tmp_cell_enc[RELAY_PAYLOAD_SIZE] = {0};
uint8_t mac[TRUNNEL_SHA3_256_LEN], *handshake_ptr;
/* We first encode the current fields we have in the cell so we can
* compute the MAC using the raw bytes. */
tmp_cell_enc_len = trn_cell_establish_intro_encode(tmp_cell_enc,
sizeof(tmp_cell_enc),
cell);
if (BUG(tmp_cell_enc_len < 0)) {
goto done;
}
/* Sanity check. */
tor_assert(tmp_cell_enc_len > tmp_cell_mac_offset);
/* Circuit nonce is always DIGEST_LEN according to tor-spec.txt. */
crypto_mac_sha3_256(mac, sizeof(mac),
(uint8_t *) circ_nonce, DIGEST_LEN,
tmp_cell_enc, tmp_cell_enc_len - tmp_cell_mac_offset);
handshake_ptr = trn_cell_establish_intro_getarray_handshake_mac(cell);
memcpy(handshake_ptr, mac, sizeof(mac));
2017-08-03 14:42:30 +02:00
memwipe(mac, 0, sizeof(mac));
memwipe(tmp_cell_enc, 0, sizeof(tmp_cell_enc));
}
/* Calculate the cell signature SIG. */
{
ssize_t tmp_cell_enc_len = 0;
ssize_t tmp_cell_sig_offset = (sig_len + sizeof(cell->sig_len));
uint8_t tmp_cell_enc[RELAY_PAYLOAD_SIZE] = {0}, *sig_ptr;
ed25519_signature_t sig;
/* We first encode the current fields we have in the cell so we can
* compute the signature from the raw bytes of the cell. */
tmp_cell_enc_len = trn_cell_establish_intro_encode(tmp_cell_enc,
sizeof(tmp_cell_enc),
cell);
if (BUG(tmp_cell_enc_len < 0)) {
goto done;
}
if (ed25519_sign_prefixed(&sig, tmp_cell_enc,
tmp_cell_enc_len - tmp_cell_sig_offset,
ESTABLISH_INTRO_SIG_PREFIX, &ip->auth_key_kp)) {
log_warn(LD_BUG, "Unable to make signature for ESTABLISH_INTRO cell.");
goto done;
}
/* Copy the signature into the cell. */
sig_ptr = trn_cell_establish_intro_getarray_sig(cell);
memcpy(sig_ptr, sig.sig, sig_len);
2017-08-03 14:42:30 +02:00
memwipe(tmp_cell_enc, 0, sizeof(tmp_cell_enc));
}
/* Encode the cell. Can't be bigger than a standard cell. */
cell_len = trn_cell_establish_intro_encode(cell_out, RELAY_PAYLOAD_SIZE,
cell);
done:
trn_cell_establish_intro_free(cell);
return cell_len;
}
/* Parse the INTRO_ESTABLISHED cell in the payload of size payload_len. If we
* are successful at parsing it, return the length of the parsed cell else a
* negative value on error. */
ssize_t
hs_cell_parse_intro_established(const uint8_t *payload, size_t payload_len)
{
ssize_t ret;
trn_cell_intro_established_t *cell = NULL;
tor_assert(payload);
/* Try to parse the payload into a cell making sure we do actually have a
* valid cell. */
ret = trn_cell_intro_established_parse(&cell, payload, payload_len);
if (ret >= 0) {
/* On success, we do not keep the cell, we just notify the caller that it
* was successfully parsed. */
trn_cell_intro_established_free(cell);
}
return ret;
}
/* Parsse the INTRODUCE2 cell using data which contains everything we need to
* do so and contains the destination buffers of information we extract and
* compute from the cell. Return 0 on success else a negative value. The
* service and circ are only used for logging purposes. */
ssize_t
hs_cell_parse_introduce2(hs_cell_introduce2_data_t *data,
const origin_circuit_t *circ,
const hs_service_t *service)
{
int ret = -1;
time_t elapsed;
uint8_t *decrypted = NULL;
size_t encrypted_section_len;
const uint8_t *encrypted_section;
trn_cell_introduce1_t *cell = NULL;
trn_cell_introduce_encrypted_t *enc_cell = NULL;
hs_ntor_intro_cell_keys_t *intro_keys = NULL;
tor_assert(data);
tor_assert(circ);
tor_assert(service);
/* Parse the cell into a decoded data structure pointed by cell_ptr. */
if (parse_introduce2_cell(service, circ, data->payload, data->payload_len,
&cell) < 0) {
goto done;
}
log_info(LD_REND, "Received a decodable INTRODUCE2 cell on circuit %u "
"for service %s. Decoding encrypted section...",
TO_CIRCUIT(circ)->n_circ_id,
safe_str_client(service->onion_address));
encrypted_section = trn_cell_introduce1_getconstarray_encrypted(cell);
encrypted_section_len = trn_cell_introduce1_getlen_encrypted(cell);
/* Encrypted section must at least contain the CLIENT_PK and MAC which is
* defined in section 3.3.2 of the specification. */
if (encrypted_section_len < (CURVE25519_PUBKEY_LEN + DIGEST256_LEN)) {
log_info(LD_REND, "Invalid INTRODUCE2 encrypted section length "
"for service %s. Dropping cell.",
safe_str_client(service->onion_address));
goto done;
}
/* Check our replay cache for this introduction point. */
if (replaycache_add_test_and_elapsed(data->replay_cache, encrypted_section,
encrypted_section_len, &elapsed)) {
log_warn(LD_REND, "Possible replay detected! An INTRODUCE2 cell with the"
"same ENCRYPTED section was seen %ld seconds ago. "
"Dropping cell.", (long int) elapsed);
goto done;
}
/* Build the key material out of the key material found in the cell. */
intro_keys = get_introduce2_key_material(data->auth_pk, data->enc_kp,
data->subcredential,
encrypted_section,
&data->client_pk);
if (intro_keys == NULL) {
log_info(LD_REND, "Invalid INTRODUCE2 encrypted data. Unable to "
"compute key material on circuit %u for service %s",
TO_CIRCUIT(circ)->n_circ_id,
safe_str_client(service->onion_address));
goto done;
}
/* Validate MAC from the cell and our computed key material. The MAC field
* in the cell is at the end of the encrypted section. */
{
uint8_t mac[DIGEST256_LEN];
/* The MAC field is at the very end of the ENCRYPTED section. */
size_t mac_offset = encrypted_section_len - sizeof(mac);
/* Compute the MAC. Use the entire encoded payload with a length up to the
* ENCRYPTED section. */
compute_introduce_mac(data->payload,
data->payload_len - encrypted_section_len,
encrypted_section, encrypted_section_len,
intro_keys->mac_key, sizeof(intro_keys->mac_key),
mac, sizeof(mac));
if (tor_memcmp(mac, encrypted_section + mac_offset, sizeof(mac))) {
log_info(LD_REND, "Invalid MAC validation for INTRODUCE2 cell on "
"circuit %u for service %s",
TO_CIRCUIT(circ)->n_circ_id,
safe_str_client(service->onion_address));
goto done;
}
}
{
/* The ENCRYPTED_DATA section starts just after the CLIENT_PK. */
const uint8_t *encrypted_data =
encrypted_section + sizeof(data->client_pk);
/* It's symmetric encryption so it's correct to use the ENCRYPTED length
* for decryption. Computes the length of ENCRYPTED_DATA meaning removing
* the CLIENT_PK and MAC length. */
size_t encrypted_data_len =
encrypted_section_len - (sizeof(data->client_pk) + DIGEST256_LEN);
/* This decrypts the ENCRYPTED_DATA section of the cell. */
decrypted = decrypt_introduce2(intro_keys->enc_key,
encrypted_data, encrypted_data_len);
if (decrypted == NULL) {
log_info(LD_REND, "Unable to decrypt the ENCRYPTED section of an "
"INTRODUCE2 cell on circuit %u for service %s",
TO_CIRCUIT(circ)->n_circ_id,
safe_str_client(service->onion_address));
goto done;
}
/* Parse this blob into an encrypted cell structure so we can then extract
* the data we need out of it. */
enc_cell = parse_introduce2_encrypted(decrypted, encrypted_data_len,
circ, service);
memwipe(decrypted, 0, encrypted_data_len);
if (enc_cell == NULL) {
goto done;
}
}
/* XXX: Implement client authorization checks. */
/* Extract onion key and rendezvous cookie from the cell used for the
* rendezvous point circuit e2e encryption. */
memcpy(data->onion_pk.public_key,
trn_cell_introduce_encrypted_getconstarray_onion_key(enc_cell),
CURVE25519_PUBKEY_LEN);
memcpy(data->rendezvous_cookie,
trn_cell_introduce_encrypted_getconstarray_rend_cookie(enc_cell),
sizeof(data->rendezvous_cookie));
/* Extract rendezvous link specifiers. */
for (size_t idx = 0;
idx < trn_cell_introduce_encrypted_get_nspec(enc_cell); idx++) {
link_specifier_t *lspec =
trn_cell_introduce_encrypted_get_nspecs(enc_cell, idx);
smartlist_add(data->link_specifiers, hs_link_specifier_dup(lspec));
}
/* Success. */
ret = 0;
log_info(LD_REND, "Valid INTRODUCE2 cell. Launching rendezvous circuit.");
done:
if (intro_keys) {
memwipe(intro_keys, 0, sizeof(hs_ntor_intro_cell_keys_t));
tor_free(intro_keys);
}
tor_free(decrypted);
trn_cell_introduce_encrypted_free(enc_cell);
trn_cell_introduce1_free(cell);
return ret;
}
/* Build a RENDEZVOUS1 cell with the given rendezvous cookie and handshake
* info. The encoded cell is put in cell_out and the length of the data is
* returned. This can't fail. */
ssize_t
hs_cell_build_rendezvous1(const uint8_t *rendezvous_cookie,
size_t rendezvous_cookie_len,
const uint8_t *rendezvous_handshake_info,
size_t rendezvous_handshake_info_len,
uint8_t *cell_out)
{
ssize_t cell_len;
trn_cell_rendezvous1_t *cell;
tor_assert(rendezvous_cookie);
tor_assert(rendezvous_handshake_info);
tor_assert(cell_out);
cell = trn_cell_rendezvous1_new();
/* Set the RENDEZVOUS_COOKIE. */
memcpy(trn_cell_rendezvous1_getarray_rendezvous_cookie(cell),
rendezvous_cookie, rendezvous_cookie_len);
/* Set the HANDSHAKE_INFO. */
trn_cell_rendezvous1_setlen_handshake_info(cell,
rendezvous_handshake_info_len);
memcpy(trn_cell_rendezvous1_getarray_handshake_info(cell),
rendezvous_handshake_info, rendezvous_handshake_info_len);
/* Encoding. */
cell_len = trn_cell_rendezvous1_encode(cell_out, RELAY_PAYLOAD_SIZE, cell);
tor_assert(cell_len > 0);
trn_cell_rendezvous1_free(cell);
return cell_len;
}
/* Build an INTRODUCE1 cell from the given data. The encoded cell is put in
* cell_out which must be of at least size RELAY_PAYLOAD_SIZE. On success, the
* encoded length is returned else a negative value and the content of
* cell_out should be ignored. */
ssize_t
hs_cell_build_introduce1(const hs_cell_introduce1_data_t *data,
uint8_t *cell_out)
{
ssize_t cell_len;
trn_cell_introduce1_t *cell;
trn_cell_extension_t *ext;
tor_assert(data);
tor_assert(cell_out);
cell = trn_cell_introduce1_new();
tor_assert(cell);
/* Set extension data. None are used. */
ext = trn_cell_extension_new();
tor_assert(ext);
trn_cell_extension_set_num(ext, 0);
trn_cell_introduce1_set_extensions(cell, ext);
/* Set the legacy ID field. */
introduce1_set_legacy_id(cell, data);
/* Set the authentication key. */
introduce1_set_auth_key(cell, data);
/* Set the encrypted section. This will set, encrypt and encode the
* ENCRYPTED section in the cell. After this, we'll be ready to encode. */
introduce1_set_encrypted(cell, data);
/* Final encoding. */
cell_len = trn_cell_introduce1_encode(cell_out, RELAY_PAYLOAD_SIZE, cell);
trn_cell_introduce1_free(cell);
return cell_len;
}
/* Build an ESTABLISH_RENDEZVOUS cell from the given rendezvous_cookie. The
* encoded cell is put in cell_out which must be of at least
* RELAY_PAYLOAD_SIZE. On success, the encoded length is returned and the
* caller should clear up the content of the cell.
*
* This function can't fail. */
ssize_t
hs_cell_build_establish_rendezvous(const uint8_t *rendezvous_cookie,
uint8_t *cell_out)
{
tor_assert(rendezvous_cookie);
tor_assert(cell_out);
memcpy(cell_out, rendezvous_cookie, HS_REND_COOKIE_LEN);
return HS_REND_COOKIE_LEN;
}
/* Handle an INTRODUCE_ACK cell encoded in payload of length payload_len.
* Return the status code on success else a negative value if the cell as not
* decodable. */
int
hs_cell_parse_introduce_ack(const uint8_t *payload, size_t payload_len)
{
int ret = -1;
trn_cell_introduce_ack_t *cell = NULL;
tor_assert(payload);
if (trn_cell_introduce_ack_parse(&cell, payload, payload_len) < 0) {
log_info(LD_REND, "Invalid INTRODUCE_ACK cell. Unable to parse it.");
goto end;
}
ret = trn_cell_introduce_ack_get_status(cell);
end:
trn_cell_introduce_ack_free(cell);
return ret;
}