tor/src/test/hs_test_helpers.c

258 lines
9.2 KiB
C
Raw Normal View History

/* Copyright (c) 2017, The Tor Project, Inc. */
/* See LICENSE for licensing information */
#include "or.h"
#include "crypto_ed25519.h"
#include "test.h"
#include "torcert.h"
#include "hs_test_helpers.h"
hs_desc_intro_point_t *
hs_helper_build_intro_point(const ed25519_keypair_t *signing_kp, time_t now,
const char *addr, int legacy)
{
int ret;
ed25519_keypair_t auth_kp;
hs_desc_intro_point_t *intro_point = NULL;
hs_desc_intro_point_t *ip = tor_malloc_zero(sizeof(*ip));
ip->link_specifiers = smartlist_new();
{
hs_desc_link_specifier_t *ls = tor_malloc_zero(sizeof(*ls));
if (legacy) {
ls->type = LS_LEGACY_ID;
memcpy(ls->u.legacy_id, "0299F268FCA9D55CD157976D39AE92B4B455B3A8",
DIGEST_LEN);
} else {
ls->u.ap.port = 9001;
int family = tor_addr_parse(&ls->u.ap.addr, addr);
switch (family) {
case AF_INET:
ls->type = LS_IPV4;
break;
case AF_INET6:
ls->type = LS_IPV6;
break;
default:
/* Stop the test, not suppose to have an error. */
tt_int_op(family, OP_EQ, AF_INET);
}
}
smartlist_add(ip->link_specifiers, ls);
}
ret = ed25519_keypair_generate(&auth_kp, 0);
tt_int_op(ret, ==, 0);
ip->auth_key_cert = tor_cert_create(signing_kp, CERT_TYPE_AUTH_HS_IP_KEY,
&auth_kp.pubkey, now,
HS_DESC_CERT_LIFETIME,
CERT_FLAG_INCLUDE_SIGNING_KEY);
tt_assert(ip->auth_key_cert);
if (legacy) {
ip->legacy.key = crypto_pk_new();
tt_assert(ip->legacy.key);
ret = crypto_pk_generate_key(ip->legacy.key);
tt_int_op(ret, ==, 0);
ssize_t cert_len = tor_make_rsa_ed25519_crosscert(
&signing_kp->pubkey, ip->legacy.key,
now + HS_DESC_CERT_LIFETIME,
&ip->legacy.cert.encoded);
tt_assert(ip->legacy.cert.encoded);
tt_u64_op(cert_len, OP_GT, 0);
ip->legacy.cert.len = cert_len;
}
/* Encryption key. */
{
int signbit;
curve25519_keypair_t curve25519_kp;
ed25519_keypair_t ed25519_kp;
tor_cert_t *cross_cert;
ret = curve25519_keypair_generate(&curve25519_kp, 0);
tt_int_op(ret, ==, 0);
ed25519_keypair_from_curve25519_keypair(&ed25519_kp, &signbit,
&curve25519_kp);
cross_cert = tor_cert_create(signing_kp, CERT_TYPE_CROSS_HS_IP_KEYS,
&ed25519_kp.pubkey, time(NULL),
HS_DESC_CERT_LIFETIME,
CERT_FLAG_INCLUDE_SIGNING_KEY);
tt_assert(cross_cert);
ip->enc_key_cert = cross_cert;
}
intro_point = ip;
done:
return intro_point;
}
/* Return a valid hs_descriptor_t object. If no_ip is set, no introduction
* points are added. */
static hs_descriptor_t *
hs_helper_build_hs_desc_impl(unsigned int no_ip,
const ed25519_keypair_t *signing_kp)
{
int ret;
time_t now = time(NULL);
ed25519_keypair_t blinded_kp;
hs_descriptor_t *descp = NULL, *desc = tor_malloc_zero(sizeof(*desc));
desc->plaintext_data.version = HS_DESC_SUPPORTED_FORMAT_VERSION_MAX;
/* Copy only the public key into the descriptor. */
memcpy(&desc->plaintext_data.signing_pubkey, &signing_kp->pubkey,
sizeof(ed25519_public_key_t));
ret = ed25519_keypair_generate(&blinded_kp, 0);
tt_int_op(ret, ==, 0);
/* Copy only the public key into the descriptor. */
memcpy(&desc->plaintext_data.blinded_pubkey, &blinded_kp.pubkey,
sizeof(ed25519_public_key_t));
desc->plaintext_data.signing_key_cert =
tor_cert_create(&blinded_kp, CERT_TYPE_SIGNING_HS_DESC,
&signing_kp->pubkey, now, 3600,
CERT_FLAG_INCLUDE_SIGNING_KEY);
tt_assert(desc->plaintext_data.signing_key_cert);
desc->plaintext_data.revision_counter = 42;
desc->plaintext_data.lifetime_sec = 3 * 60 * 60;
/* Setup encrypted data section. */
desc->encrypted_data.create2_ntor = 1;
desc->encrypted_data.intro_auth_types = smartlist_new();
desc->encrypted_data.single_onion_service = 1;
smartlist_add(desc->encrypted_data.intro_auth_types, tor_strdup("ed25519"));
desc->encrypted_data.intro_points = smartlist_new();
if (!no_ip) {
/* Add four intro points. */
smartlist_add(desc->encrypted_data.intro_points,
hs_helper_build_intro_point(signing_kp, now, "1.2.3.4", 0));
smartlist_add(desc->encrypted_data.intro_points,
hs_helper_build_intro_point(signing_kp, now, "[2600::1]", 0));
smartlist_add(desc->encrypted_data.intro_points,
hs_helper_build_intro_point(signing_kp, now, "3.2.1.4", 1));
smartlist_add(desc->encrypted_data.intro_points,
hs_helper_build_intro_point(signing_kp, now, "", 1));
}
descp = desc;
done:
return descp;
}
/* Build a descriptor with introduction points. */
hs_descriptor_t *
hs_helper_build_hs_desc_with_ip(const ed25519_keypair_t *signing_kp)
{
return hs_helper_build_hs_desc_impl(0, signing_kp);
}
/* Build a descriptor without any introduction points. */
hs_descriptor_t *
hs_helper_build_hs_desc_no_ip(const ed25519_keypair_t *signing_kp)
{
return hs_helper_build_hs_desc_impl(1, signing_kp);
}
void
hs_helper_desc_equal(const hs_descriptor_t *desc1,
const hs_descriptor_t *desc2)
{
char *addr1 = NULL, *addr2 = NULL;
/* Plaintext data section. */
tt_int_op(desc1->plaintext_data.version, OP_EQ,
desc2->plaintext_data.version);
tt_uint_op(desc1->plaintext_data.lifetime_sec, OP_EQ,
desc2->plaintext_data.lifetime_sec);
tt_assert(tor_cert_eq(desc1->plaintext_data.signing_key_cert,
desc2->plaintext_data.signing_key_cert));
tt_mem_op(desc1->plaintext_data.signing_pubkey.pubkey, OP_EQ,
desc2->plaintext_data.signing_pubkey.pubkey,
ED25519_PUBKEY_LEN);
tt_mem_op(desc1->plaintext_data.blinded_pubkey.pubkey, OP_EQ,
desc2->plaintext_data.blinded_pubkey.pubkey,
ED25519_PUBKEY_LEN);
tt_u64_op(desc1->plaintext_data.revision_counter, ==,
desc2->plaintext_data.revision_counter);
/* NOTE: We can't compare the encrypted blob because when encoding the
* descriptor, the object is immutable thus we don't update it with the
* encrypted blob. As contrast to the decoding process where we populate a
* descriptor object. */
/* Encrypted data section. */
tt_uint_op(desc1->encrypted_data.create2_ntor, ==,
desc2->encrypted_data.create2_ntor);
/* Authentication type. */
tt_int_op(!!desc1->encrypted_data.intro_auth_types, ==,
!!desc2->encrypted_data.intro_auth_types);
if (desc1->encrypted_data.intro_auth_types &&
desc2->encrypted_data.intro_auth_types) {
tt_int_op(smartlist_len(desc1->encrypted_data.intro_auth_types), ==,
smartlist_len(desc2->encrypted_data.intro_auth_types));
for (int i = 0;
i < smartlist_len(desc1->encrypted_data.intro_auth_types);
i++) {
tt_str_op(smartlist_get(desc1->encrypted_data.intro_auth_types, i),OP_EQ,
smartlist_get(desc2->encrypted_data.intro_auth_types, i));
}
}
/* Introduction points. */
{
tt_assert(desc1->encrypted_data.intro_points);
tt_assert(desc2->encrypted_data.intro_points);
tt_int_op(smartlist_len(desc1->encrypted_data.intro_points), ==,
smartlist_len(desc2->encrypted_data.intro_points));
for (int i=0; i < smartlist_len(desc1->encrypted_data.intro_points); i++) {
hs_desc_intro_point_t *ip1 = smartlist_get(desc1->encrypted_data
.intro_points, i),
*ip2 = smartlist_get(desc2->encrypted_data
.intro_points, i);
tt_assert(tor_cert_eq(ip1->auth_key_cert, ip2->auth_key_cert));
if (ip1->legacy.key) {
tt_int_op(crypto_pk_cmp_keys(ip1->legacy.key, ip2->legacy.key),
OP_EQ, 0);
} else {
tt_mem_op(&ip1->enc_key, OP_EQ, &ip2->enc_key, CURVE25519_PUBKEY_LEN);
}
tt_int_op(smartlist_len(ip1->link_specifiers), ==,
smartlist_len(ip2->link_specifiers));
for (int j = 0; j < smartlist_len(ip1->link_specifiers); j++) {
hs_desc_link_specifier_t *ls1 = smartlist_get(ip1->link_specifiers, j),
*ls2 = smartlist_get(ip2->link_specifiers, j);
tt_int_op(ls1->type, ==, ls2->type);
switch (ls1->type) {
case LS_IPV4:
case LS_IPV6:
{
addr1 = tor_addr_to_str_dup(&ls1->u.ap.addr);
addr2 = tor_addr_to_str_dup(&ls2->u.ap.addr);
tt_str_op(addr1, OP_EQ, addr2);
tor_free(addr1);
tor_free(addr2);
tt_int_op(ls1->u.ap.port, ==, ls2->u.ap.port);
}
break;
case LS_LEGACY_ID:
tt_mem_op(ls1->u.legacy_id, OP_EQ, ls2->u.legacy_id,
sizeof(ls1->u.legacy_id));
break;
default:
/* Unknown type, caught it and print its value. */
tt_int_op(ls1->type, OP_EQ, -1);
}
}
}
}
done:
tor_free(addr1);
tor_free(addr2);
}