tor/src/common/crypto.c

860 lines
18 KiB
C
Raw Normal View History

/* Copyright 2001,2002 Roger Dingledine, Matej Pfajfar. */
/* See LICENSE for licensing information */
/* $Id$ */
#include <string.h>
#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/opensslv.h>
#include <openssl/bn.h>
#include <openssl/dh.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include "crypto.h"
#include "../or/or.h"
#include "log.h"
#if OPENSSL_VERSION_NUMBER < 0x00905000l
#error "We require openssl >= 0.9.5"
#elif OPENSSL_VERSION_NUMBER < 0x00906000l
#define OPENSSL_095
#endif
/*
* Certain functions that return a success code in OpenSSL 0.9.6 return void
* (and don't indicate errors) in OpenSSL version 0.9.5.
*
* [OpenSSL 0.9.5 matters, because it ships with Redhat 6.2.]
*/
#ifdef OPENSSL_095
#define RETURN_SSL_OUTCOME(exp) (exp); return 0
#else
#define RETURN_SSL_OUTCOME(exp) return !(exp)
#endif
static inline int
crypto_cipher_iv_length(int type) {
switch(type)
{
case CRYPTO_CIPHER_IDENTITY: return 0;
case CRYPTO_CIPHER_DES: return 8;
case CRYPTO_CIPHER_RC4: return 16;
case CRYPTO_CIPHER_3DES: return 8;
default: assert(0); return -1;
}
}
static inline int
crypto_cipher_key_length(int type) {
switch(type)
{
case CRYPTO_CIPHER_IDENTITY: return 0;
case CRYPTO_CIPHER_DES: return 8;
case CRYPTO_CIPHER_RC4: return 16;
case CRYPTO_CIPHER_3DES: return 16;
default: assert(0); return -1;
}
}
static inline EVP_CIPHER *
crypto_cipher_evp_cipher(int type, int enc) {
switch(type)
{
case CRYPTO_CIPHER_IDENTITY: return EVP_enc_null();
case CRYPTO_CIPHER_DES: return EVP_des_ofb();
case CRYPTO_CIPHER_RC4: return EVP_rc4();
case CRYPTO_CIPHER_3DES: return EVP_des_ede_ofb();
default: return NULL;
}
}
int crypto_global_init()
{
ERR_load_crypto_strings();
return 0;
}
int crypto_global_cleanup()
{
ERR_free_strings();
return 0;
}
crypto_pk_env_t *crypto_new_pk_env(int type)
{
crypto_pk_env_t *env;
env = (crypto_pk_env_t *)malloc(sizeof(crypto_pk_env_t));
if (!env)
return 0;
env->type = type;
env->refs = 1;
env->key = NULL;
env->aux = NULL;
switch(type) {
case CRYPTO_PK_RSA:
env->key = (unsigned char *)RSA_new();
if (!env->key) {
free((void *)env);
return NULL;
}
break;
default:
free((void *)env);
return NULL;
break;
}
return env;
}
void crypto_free_pk_env(crypto_pk_env_t *env)
{
assert(env);
if(--env->refs > 0)
return;
switch(env->type) {
case CRYPTO_PK_RSA:
if (env->key)
RSA_free((RSA *)env->key);
break;
default:
break;
}
free((void *)env);
return;
}
/* Create a new crypto_cipher_env_t for a given onion cipher type, key,
* iv, and encryption flag (1=encrypt, 0=decrypt). Return the crypto object
* on success; NULL on failure.
*/
crypto_cipher_env_t *
crypto_create_init_cipher(int cipher_type, char *key, char *iv, int encrypt_mode)
{
int r;
crypto_cipher_env_t *crypto = NULL;
if (! (crypto = crypto_new_cipher_env(cipher_type))) {
log(LOG_ERR, "Unable to allocate crypto object");
return NULL;
}
if (crypto_cipher_set_key(crypto, key)) {
log(LOG_ERR, "Unable to set key: %s", crypto_perror());
goto error;
}
if (crypto_cipher_set_iv(crypto, iv)) {
log(LOG_ERR, "Unable to set iv: %s", crypto_perror());
goto error;
}
if (encrypt_mode)
r = crypto_cipher_encrypt_init_cipher(crypto);
else
r = crypto_cipher_decrypt_init_cipher(crypto);
if (r) {
log(LOG_ERR, "Unabble to initialize cipher: %s", crypto_perror());
goto error;
}
return crypto;
error:
if (crypto)
crypto_free_cipher_env(crypto);
return NULL;
}
crypto_cipher_env_t *crypto_new_cipher_env(int type)
{
crypto_cipher_env_t *env;
int iv_len, key_len;
env = (crypto_cipher_env_t *)malloc(sizeof(crypto_cipher_env_t));
if (!env)
return NULL;
env->type = type;
env->key = NULL;
env->iv = NULL;
env->aux = NULL;
iv_len = crypto_cipher_iv_length(type);
key_len = crypto_cipher_key_length(type);
if (! crypto_cipher_evp_cipher(type,0))
/* This is not an openssl cipher */
goto err;
else {
env->aux = (unsigned char *)malloc(sizeof(EVP_CIPHER_CTX));
EVP_CIPHER_CTX_init((EVP_CIPHER_CTX *)env->aux);
}
if (iv_len && !(env->iv = (unsigned char *)malloc(iv_len)))
goto err;
if (key_len && !(env->key = (unsigned char *)malloc(key_len)))
goto err;
return env;
err:
if (env->key)
free(env->key);
if (env->iv)
free(env->iv);
if (env->aux)
free(env->aux);
if (env)
free(env);
return NULL;
}
void crypto_free_cipher_env(crypto_cipher_env_t *env)
{
assert(env);
if (crypto_cipher_evp_cipher(env->type,0)) {
/* This is an openssl cipher */
assert(env->aux);
EVP_CIPHER_CTX_cleanup((EVP_CIPHER_CTX *)env->aux);
}
if (env->aux)
free((void *)env->aux);
if (env->iv)
free((void *)env->iv);
if (env->key)
free((void *)env->key);
free((void *)env);
}
/* public key crypto */
int crypto_pk_generate_key(crypto_pk_env_t *env)
{
assert(env);
switch(env->type) {
case CRYPTO_PK_RSA:
if (env->key)
RSA_free((RSA *)env->key);
env->key = (unsigned char *)RSA_generate_key(1024,65537, NULL, NULL);
if (!env->key)
return -1;
break;
default:
return -1;
}
return 0;
}
int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env, FILE *src)
{
assert(env && src);
switch(env->type) {
case CRYPTO_PK_RSA:
if (env->key)
2002-09-28 00:13:22 +02:00
RSA_free((RSA *)env->key);
env->key = (unsigned char *)PEM_read_RSAPrivateKey(src, NULL, NULL, NULL);
if (!env->key)
return -1;
break;
default :
return -1;
}
return 0;
}
int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, unsigned char *keyfile)
{
FILE *f_pr;
int retval = 0;
assert(env && keyfile);
if (strspn(keyfile,CONFIG_LEGAL_FILENAME_CHARACTERS) == strlen(keyfile)) /* filename contains legal characters only */
{
/* open the keyfile */
f_pr=fopen(keyfile,"rb");
if (!f_pr)
return -1;
/* read the private key */
retval = crypto_pk_read_private_key_from_file(env, f_pr);
fclose(f_pr);
if (retval == -1)
{
log(LOG_ERR,"Error reading private key : %s",crypto_perror());
return -1;
}
/* check the private key */
retval = crypto_pk_check_key(env);
if (retval == 0)
{
log(LOG_ERR,"Private key read but is invalid : %s.", crypto_perror());
return -1;
}
else if (retval == -1)
{
log(LOG_ERR,"Private key read but validity checking failed : %s",crypto_perror());
return -1;
}
else if (retval == 1)
{
return 0;
}
} /* filename contains legal characters only */
return -1; /* report error */
}
int crypto_pk_read_public_key_from_file(crypto_pk_env_t *env, FILE *src)
{
assert(env && src);
switch(env->type) {
case CRYPTO_PK_RSA:
2002-09-28 00:13:22 +02:00
if(env->key)
RSA_free((RSA *)env->key);
env->key = (unsigned char *)PEM_read_RSAPublicKey(src, NULL, NULL, NULL);
if (!env->key)
return -1;
break;
default :
return -1;
}
return 0;
}
int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int *len) {
BUF_MEM *buf;
BIO *b;
assert(env && env->key && dest);
switch(env->type) {
case CRYPTO_PK_RSA:
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
/* Now you can treat b as if it were a file. Just use the
* * PEM_*_bio_* functions instead of the non-bio variants.
* */
if(!PEM_write_bio_RSAPublicKey(b, (RSA *)env->key))
return -1;
BIO_get_mem_ptr(b, &buf);
BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */
BIO_free(b);
*dest = malloc(buf->length+1);
if(!*dest)
return -1;
memcpy(*dest, buf->data, buf->length);
(*dest)[buf->length] = 0; /* null terminate it */
*len = buf->length;
BUF_MEM_free(buf);
break;
default:
return -1;
}
return 0;
}
int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, char *src, int len) {
BIO *b;
assert(env && src);
switch(env->type) {
case CRYPTO_PK_RSA:
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
BIO_write(b, src, len);
RSA_free((RSA *)env->key);
env->key = (unsigned char *)PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL);
if(!env->key)
return -1;
BIO_free(b);
break;
default:
return -1;
}
return 0;
}
int crypto_pk_write_private_key_to_file(crypto_pk_env_t *env, FILE *dest)
{
assert(env && dest);
switch(env->type) {
case CRYPTO_PK_RSA:
if (!env->key)
return -1;
if (PEM_write_RSAPrivateKey(dest, (RSA *)env->key, NULL, NULL, 0,0, NULL) == 0)
return -1;
break;
default :
return -1;
}
return 0;
}
int crypto_pk_write_public_key_to_file(crypto_pk_env_t *env, FILE *dest)
{
assert(env && dest);
switch(env->type) {
case CRYPTO_PK_RSA:
if (!env->key)
return -1;
if (PEM_write_RSAPublicKey(dest, (RSA *)env->key) == 0)
return -1;
break;
default :
return -1;
}
return 0;
}
int crypto_pk_check_key(crypto_pk_env_t *env)
{
assert(env);
switch(env->type) {
case CRYPTO_PK_RSA:
return RSA_check_key((RSA *)env->key);
default:
return -1;
}
}
int crypto_pk_set_key(crypto_pk_env_t *env, unsigned char *key)
{
assert(env && key);
switch(env->type) {
case CRYPTO_PK_RSA:
if (!env->key)
return -1;
/* XXX BUG XXX you can't memcpy an RSA, it's got a bunch of subpointers */
assert(0);
memcpy((void *)env->key, (void *)key, sizeof(RSA));
break;
default :
return -1;
}
return 0;
}
int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) {
int result;
if (!a || !b)
return -1;
if (!a->key || !b->key)
return -1;
if (a->type != b->type)
return -1;
switch(a->type) {
case CRYPTO_PK_RSA:
assert(((RSA *)a->key)->n && ((RSA *)a->key)->e && ((RSA *)b->key)->n && ((RSA *)b->key)->e);
result = BN_cmp(((RSA *)a->key)->n, ((RSA *)b->key)->n);
if (result)
return result;
return BN_cmp(((RSA *)a->key)->e, ((RSA *)b->key)->e);
default:
return -1;
}
}
int crypto_pk_keysize(crypto_pk_env_t *env)
{
assert(env && env->key);
return RSA_size((RSA *)env->key);
}
crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) {
assert(env && env->key);
switch(env->type) {
case CRYPTO_PK_RSA:
env->refs++;
break;
default:
return NULL;
}
return env;
}
int crypto_pk_public_encrypt(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to, int padding)
{
assert(env && from && to);
switch(env->type) {
case CRYPTO_PK_RSA:
return RSA_public_encrypt(fromlen, from, to, (RSA *)env->key, padding);
default:
return -1;
}
}
int crypto_pk_private_decrypt(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to, int padding)
{
assert(env && from && to);
switch(env->type) {
case CRYPTO_PK_RSA:
if (!(((RSA*)env->key)->p))
return -1;
return RSA_private_decrypt(fromlen, from, to, (RSA *)env->key, padding);
default:
return -1;
}
}
int crypto_pk_public_checksig(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to)
{
assert(env && from && to);
switch(env->type) {
case CRYPTO_PK_RSA:
if (!(((RSA*)env->key)->p))
return -1;
return RSA_public_decrypt(fromlen, from, to, (RSA *)env->key,
RSA_PKCS1_OAEP_PADDING);
default:
return -1;
}
}
int crypto_pk_private_sign(crypto_pk_env_t *env, unsigned char *from, int fromlen, unsigned char *to)
{
assert(env && from && to);
switch(env->type) {
case CRYPTO_PK_RSA:
if (!(((RSA*)env->key)->p))
return -1;
return RSA_private_encrypt(fromlen, from, to, (RSA *)env->key,
RSA_PKCS1_OAEP_PADDING);
default:
return -1;
}
}
/* symmetric crypto */
int crypto_cipher_generate_key(crypto_cipher_env_t *env)
{
int key_len;
assert(env);
key_len = crypto_cipher_key_length(env->type);
if (key_len > 0)
return crypto_rand(key_len, env->key);
else if (key_len == 0)
return 0;
else
return -1;
}
int crypto_cipher_set_iv(crypto_cipher_env_t *env, unsigned char *iv)
{
int iv_len;
assert(env && iv);
iv_len = crypto_cipher_iv_length(env->type);
if (!iv_len)
return 0;
if (!env->iv)
return -1;
memcpy((void*)env->iv, (void*)iv, iv_len);
return 0;
}
int crypto_cipher_set_key(crypto_cipher_env_t *env, unsigned char *key)
{
int key_len;
assert(env && key);
key_len = crypto_cipher_key_length(env->type);
if (!key_len)
return 0;
if (!env->key)
return -1;
memcpy((void*)env->key, (void*)key, key_len);
return 0;
}
int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env)
{
assert(env);
if (crypto_cipher_evp_cipher(env->type, 1)) {
RETURN_SSL_OUTCOME(EVP_EncryptInit((EVP_CIPHER_CTX *)env->aux,
2003-04-17 01:22:05 +02:00
crypto_cipher_evp_cipher(env->type, 1),
env->key, env->iv));
} else {
return -1;
}
}
int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env)
{
assert(env);
if (crypto_cipher_evp_cipher(env->type, 0)) {
RETURN_SSL_OUTCOME(EVP_EncryptInit((EVP_CIPHER_CTX *)env->aux,
2003-04-17 01:22:05 +02:00
crypto_cipher_evp_cipher(env->type, 0),
env->key, env->iv));
} else {
return -1;
}
}
2002-09-03 20:44:24 +02:00
int crypto_cipher_encrypt(crypto_cipher_env_t *env, unsigned char *from, unsigned int fromlen, unsigned char *to)
{
int tolen;
assert(env && from && to);
RETURN_SSL_OUTCOME(EVP_EncryptUpdate((EVP_CIPHER_CTX *)env->aux, to, &tolen, from, fromlen));
}
2002-09-03 20:44:24 +02:00
int crypto_cipher_decrypt(crypto_cipher_env_t *env, unsigned char *from, unsigned int fromlen, unsigned char *to)
{
int tolen;
assert(env && from && to);
RETURN_SSL_OUTCOME(EVP_DecryptUpdate((EVP_CIPHER_CTX *)env->aux, to, &tolen, from, fromlen));
}
/* SHA-1 */
int crypto_SHA_digest(unsigned char *m, int len, unsigned char *digest)
{
assert(m && digest);
return (SHA1(m,len,digest) == NULL);
}
struct crypto_dh_env_st {
DH *dh;
};
static BIGNUM *dh_param_p = NULL;
static BIGNUM *dh_param_g = NULL;
static void init_dh_param() {
BIGNUM *p, *g;
int r;
if (dh_param_p && dh_param_g)
return;
p = BN_new();
g = BN_new();
assert(p && g);
#if 0
/* This is from draft-ietf-ipsec-ike-modp-groups-05.txt. It's a safe
prime, and supposedly it equals:
2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 }
*/
r = BN_hex2bn(&p,
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF");
#endif
/* This is from rfc2409, section 6.2. It's a safe prime, and
supposedly it equals:
2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
*/
r = BN_hex2bn(&p,
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE65381FFFFFFFFFFFFFFFF");
assert(r);
r = BN_set_word(g, 2);
assert(r);
dh_param_p = p;
dh_param_g = g;
}
crypto_dh_env_t *crypto_dh_new()
{
crypto_dh_env_t *res = NULL;
if (!dh_param_p)
init_dh_param();
if (!(res = malloc(sizeof(crypto_dh_env_t))))
goto err;
res->dh = NULL;
if (!(res->dh = DH_new()))
goto err;
if (!(res->dh->p = BN_dup(dh_param_p)))
goto err;
if (!(res->dh->g = BN_dup(dh_param_g)))
goto err;
return res;
err:
if (res && res->dh) DH_free(res->dh); /* frees p and g too */
if (res) free(res);
return NULL;
}
int crypto_dh_get_bytes(crypto_dh_env_t *dh)
{
assert(dh);
return DH_size(dh->dh);
}
int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len)
{
int bytes;
assert(dh);
if (!DH_generate_key(dh->dh))
return -1;
assert(dh->dh->pub_key);
bytes = BN_num_bytes(dh->dh->pub_key);
if (pubkey_len < bytes)
return -1;
memset(pubkey, 0, pubkey_len);
BN_bn2bin(dh->dh->pub_key, pubkey+(pubkey_len-bytes));
return 0;
}
int crypto_dh_compute_secret(crypto_dh_env_t *dh,
char *pubkey, int pubkey_len,
char *secret_out)
{
BIGNUM *pubkey_bn;
int secret_len;
assert(dh);
if (!(pubkey_bn = BN_bin2bn(pubkey, pubkey_len, NULL)))
return -1;
secret_len = DH_compute_key(secret_out, pubkey_bn, dh->dh);
BN_free(pubkey_bn);
if (secret_len == -1)
return -1;
return 0;
}
void crypto_dh_free(crypto_dh_env_t *dh)
{
assert(dh && dh->dh);
DH_free(dh->dh);
free(dh);
}
/* random numbers */
int crypto_rand(unsigned int n, unsigned char *to)
{
assert(to);
return (RAND_bytes(to, n) != 1);
}
int crypto_pseudo_rand(unsigned int n, unsigned char *to)
{
assert(to);
return (RAND_pseudo_bytes(to, n) == -1);
}
/* errors */
char *crypto_perror()
{
return (char *)ERR_reason_error_string(ERR_get_error());
}
int
base64_encode(char *dest, int destlen, char *src, int srclen)
{
EVP_ENCODE_CTX ctx;
int len, ret;
/* 48 bytes of input -> 64 bytes of output plus newline.
Plus one more byte, in case I'm wrong.
*/
if (destlen < ((srclen/48)+1)*66)
return -1;
EVP_EncodeInit(&ctx);
EVP_EncodeUpdate(&ctx, dest, &len, src, srclen);
EVP_EncodeFinal(&ctx, dest, &ret);
ret += len;
return ret;
}
int
base64_decode(char *dest, int destlen, char *src, int srclen)
{
EVP_ENCODE_CTX ctx;
int len, ret;
/* 64 bytes of input -> *up to* 48 bytes of output.
Plus one more byte, in caes I'm wrong.
*/
if (destlen < ((srclen/64)+1)*49)
return -1;
EVP_DecodeInit(&ctx);
EVP_DecodeUpdate(&ctx, dest, &len, src, srclen);
EVP_DecodeFinal(&ctx, dest, &ret);
ret += len;
return ret;
}