tor/src/trunnel/netinfo.c

724 lines
17 KiB
C
Raw Normal View History

/* netinfo.c -- generated by Trunnel v1.5.2.
* https://gitweb.torproject.org/trunnel.git
* You probably shouldn't edit this file.
*/
#include <stdlib.h>
#include "trunnel-impl.h"
#include "netinfo.h"
#define TRUNNEL_SET_ERROR_CODE(obj) \
do { \
(obj)->trunnel_error_code_ = 1; \
} while (0)
#if defined(__COVERITY__) || defined(__clang_analyzer__)
/* If we're running a static analysis tool, we don't want it to complain
* that some of our remaining-bytes checks are dead-code. */
int netinfo_deadcode_dummy__ = 0;
#define OR_DEADCODE_DUMMY || netinfo_deadcode_dummy__
#else
#define OR_DEADCODE_DUMMY
#endif
#define CHECK_REMAINING(nbytes, label) \
do { \
if (remaining < (nbytes) OR_DEADCODE_DUMMY) { \
goto label; \
} \
} while (0)
netinfo_addr_t *
netinfo_addr_new(void)
{
netinfo_addr_t *val = trunnel_calloc(1, sizeof(netinfo_addr_t));
if (NULL == val)
return NULL;
return val;
}
/** Release all storage held inside 'obj', but do not free 'obj'.
*/
static void
netinfo_addr_clear(netinfo_addr_t *obj)
{
(void) obj;
}
void
netinfo_addr_free(netinfo_addr_t *obj)
{
if (obj == NULL)
return;
netinfo_addr_clear(obj);
trunnel_memwipe(obj, sizeof(netinfo_addr_t));
trunnel_free_(obj);
}
uint8_t
netinfo_addr_get_addr_type(const netinfo_addr_t *inp)
{
return inp->addr_type;
}
int
netinfo_addr_set_addr_type(netinfo_addr_t *inp, uint8_t val)
{
inp->addr_type = val;
return 0;
}
uint8_t
netinfo_addr_get_len(const netinfo_addr_t *inp)
{
return inp->len;
}
int
netinfo_addr_set_len(netinfo_addr_t *inp, uint8_t val)
{
inp->len = val;
return 0;
}
uint32_t
netinfo_addr_get_addr_ipv4(const netinfo_addr_t *inp)
{
return inp->addr_ipv4;
}
int
netinfo_addr_set_addr_ipv4(netinfo_addr_t *inp, uint32_t val)
{
inp->addr_ipv4 = val;
return 0;
}
size_t
netinfo_addr_getlen_addr_ipv6(const netinfo_addr_t *inp)
{
(void)inp; return 16;
}
uint8_t
netinfo_addr_get_addr_ipv6(netinfo_addr_t *inp, size_t idx)
{
trunnel_assert(idx < 16);
return inp->addr_ipv6[idx];
}
uint8_t
netinfo_addr_getconst_addr_ipv6(const netinfo_addr_t *inp, size_t idx)
{
return netinfo_addr_get_addr_ipv6((netinfo_addr_t*)inp, idx);
}
int
netinfo_addr_set_addr_ipv6(netinfo_addr_t *inp, size_t idx, uint8_t elt)
{
trunnel_assert(idx < 16);
inp->addr_ipv6[idx] = elt;
return 0;
}
uint8_t *
netinfo_addr_getarray_addr_ipv6(netinfo_addr_t *inp)
{
return inp->addr_ipv6;
}
const uint8_t *
netinfo_addr_getconstarray_addr_ipv6(const netinfo_addr_t *inp)
{
return (const uint8_t *)netinfo_addr_getarray_addr_ipv6((netinfo_addr_t*)inp);
}
const char *
netinfo_addr_check(const netinfo_addr_t *obj)
{
if (obj == NULL)
return "Object was NULL";
if (obj->trunnel_error_code_)
return "A set function failed on this object";
switch (obj->addr_type) {
case NETINFO_ADDR_TYPE_IPV4:
break;
case NETINFO_ADDR_TYPE_IPV6:
break;
default:
break;
}
return NULL;
}
ssize_t
netinfo_addr_encoded_len(const netinfo_addr_t *obj)
{
ssize_t result = 0;
if (NULL != netinfo_addr_check(obj))
return -1;
/* Length of u8 addr_type */
result += 1;
/* Length of u8 len */
result += 1;
switch (obj->addr_type) {
case NETINFO_ADDR_TYPE_IPV4:
/* Length of u32 addr_ipv4 */
result += 4;
break;
case NETINFO_ADDR_TYPE_IPV6:
/* Length of u8 addr_ipv6[16] */
result += 16;
break;
default:
break;
}
return result;
}
int
netinfo_addr_clear_errors(netinfo_addr_t *obj)
{
int r = obj->trunnel_error_code_;
obj->trunnel_error_code_ = 0;
return r;
}
ssize_t
netinfo_addr_encode(uint8_t *output, const size_t avail, const netinfo_addr_t *obj)
{
ssize_t result = 0;
size_t written = 0;
uint8_t *ptr = output;
const char *msg;
#ifdef TRUNNEL_CHECK_ENCODED_LEN
const ssize_t encoded_len = netinfo_addr_encoded_len(obj);
#endif
uint8_t *backptr_len = NULL;
if (NULL != (msg = netinfo_addr_check(obj)))
goto check_failed;
#ifdef TRUNNEL_CHECK_ENCODED_LEN
trunnel_assert(encoded_len >= 0);
#endif
/* Encode u8 addr_type */
trunnel_assert(written <= avail);
if (avail - written < 1)
goto truncated;
trunnel_set_uint8(ptr, (obj->addr_type));
written += 1; ptr += 1;
/* Encode u8 len */
backptr_len = ptr;
trunnel_assert(written <= avail);
if (avail - written < 1)
goto truncated;
trunnel_set_uint8(ptr, (obj->len));
written += 1; ptr += 1;
{
size_t written_before_union = written;
/* Encode union addr[addr_type] */
trunnel_assert(written <= avail);
switch (obj->addr_type) {
case NETINFO_ADDR_TYPE_IPV4:
/* Encode u32 addr_ipv4 */
trunnel_assert(written <= avail);
if (avail - written < 4)
goto truncated;
trunnel_set_uint32(ptr, trunnel_htonl(obj->addr_ipv4));
written += 4; ptr += 4;
break;
case NETINFO_ADDR_TYPE_IPV6:
/* Encode u8 addr_ipv6[16] */
trunnel_assert(written <= avail);
if (avail - written < 16)
goto truncated;
memcpy(ptr, obj->addr_ipv6, 16);
written += 16; ptr += 16;
break;
default:
break;
}
/* Write the length field back to len */
trunnel_assert(written >= written_before_union);
#if UINT8_MAX < SIZE_MAX
if (written - written_before_union > UINT8_MAX)
goto check_failed;
#endif
trunnel_set_uint8(backptr_len, (written - written_before_union));
}
trunnel_assert(ptr == output + written);
#ifdef TRUNNEL_CHECK_ENCODED_LEN
{
trunnel_assert(encoded_len >= 0);
trunnel_assert((size_t)encoded_len == written);
}
#endif
return written;
truncated:
result = -2;
goto fail;
check_failed:
(void)msg;
result = -1;
goto fail;
fail:
trunnel_assert(result < 0);
return result;
}
/** As netinfo_addr_parse(), but do not allocate the output object.
*/
static ssize_t
netinfo_addr_parse_into(netinfo_addr_t *obj, const uint8_t *input, const size_t len_in)
{
const uint8_t *ptr = input;
size_t remaining = len_in;
ssize_t result = 0;
(void)result;
/* Parse u8 addr_type */
CHECK_REMAINING(1, truncated);
obj->addr_type = (trunnel_get_uint8(ptr));
remaining -= 1; ptr += 1;
/* Parse u8 len */
CHECK_REMAINING(1, truncated);
obj->len = (trunnel_get_uint8(ptr));
remaining -= 1; ptr += 1;
{
size_t remaining_after;
CHECK_REMAINING(obj->len, truncated);
remaining_after = remaining - obj->len;
remaining = obj->len;
/* Parse union addr[addr_type] */
switch (obj->addr_type) {
case NETINFO_ADDR_TYPE_IPV4:
/* Parse u32 addr_ipv4 */
CHECK_REMAINING(4, fail);
obj->addr_ipv4 = trunnel_ntohl(trunnel_get_uint32(ptr));
remaining -= 4; ptr += 4;
break;
case NETINFO_ADDR_TYPE_IPV6:
/* Parse u8 addr_ipv6[16] */
CHECK_REMAINING(16, fail);
memcpy(obj->addr_ipv6, ptr, 16);
remaining -= 16; ptr += 16;
break;
default:
/* Skip to end of union */
ptr += remaining; remaining = 0;
break;
}
if (remaining != 0)
goto fail;
remaining = remaining_after;
}
trunnel_assert(ptr + remaining == input + len_in);
return len_in - remaining;
truncated:
return -2;
fail:
result = -1;
return result;
}
ssize_t
netinfo_addr_parse(netinfo_addr_t **output, const uint8_t *input, const size_t len_in)
{
ssize_t result;
*output = netinfo_addr_new();
if (NULL == *output)
return -1;
result = netinfo_addr_parse_into(*output, input, len_in);
if (result < 0) {
netinfo_addr_free(*output);
*output = NULL;
}
return result;
}
netinfo_cell_t *
netinfo_cell_new(void)
{
netinfo_cell_t *val = trunnel_calloc(1, sizeof(netinfo_cell_t));
if (NULL == val)
return NULL;
return val;
}
/** Release all storage held inside 'obj', but do not free 'obj'.
*/
static void
netinfo_cell_clear(netinfo_cell_t *obj)
{
(void) obj;
netinfo_addr_free(obj->other_addr);
obj->other_addr = NULL;
{
unsigned idx;
for (idx = 0; idx < TRUNNEL_DYNARRAY_LEN(&obj->my_addrs); ++idx) {
netinfo_addr_free(TRUNNEL_DYNARRAY_GET(&obj->my_addrs, idx));
}
}
TRUNNEL_DYNARRAY_WIPE(&obj->my_addrs);
TRUNNEL_DYNARRAY_CLEAR(&obj->my_addrs);
}
void
netinfo_cell_free(netinfo_cell_t *obj)
{
if (obj == NULL)
return;
netinfo_cell_clear(obj);
trunnel_memwipe(obj, sizeof(netinfo_cell_t));
trunnel_free_(obj);
}
uint32_t
netinfo_cell_get_timestamp(const netinfo_cell_t *inp)
{
return inp->timestamp;
}
int
netinfo_cell_set_timestamp(netinfo_cell_t *inp, uint32_t val)
{
inp->timestamp = val;
return 0;
}
struct netinfo_addr_st *
netinfo_cell_get_other_addr(netinfo_cell_t *inp)
{
return inp->other_addr;
}
const struct netinfo_addr_st *
netinfo_cell_getconst_other_addr(const netinfo_cell_t *inp)
{
return netinfo_cell_get_other_addr((netinfo_cell_t*) inp);
}
int
netinfo_cell_set_other_addr(netinfo_cell_t *inp, struct netinfo_addr_st *val)
{
if (inp->other_addr && inp->other_addr != val)
netinfo_addr_free(inp->other_addr);
return netinfo_cell_set0_other_addr(inp, val);
}
int
netinfo_cell_set0_other_addr(netinfo_cell_t *inp, struct netinfo_addr_st *val)
{
inp->other_addr = val;
return 0;
}
uint8_t
netinfo_cell_get_n_my_addrs(const netinfo_cell_t *inp)
{
return inp->n_my_addrs;
}
int
netinfo_cell_set_n_my_addrs(netinfo_cell_t *inp, uint8_t val)
{
inp->n_my_addrs = val;
return 0;
}
size_t
netinfo_cell_getlen_my_addrs(const netinfo_cell_t *inp)
{
return TRUNNEL_DYNARRAY_LEN(&inp->my_addrs);
}
struct netinfo_addr_st *
netinfo_cell_get_my_addrs(netinfo_cell_t *inp, size_t idx)
{
return TRUNNEL_DYNARRAY_GET(&inp->my_addrs, idx);
}
const struct netinfo_addr_st *
netinfo_cell_getconst_my_addrs(const netinfo_cell_t *inp, size_t idx)
{
return netinfo_cell_get_my_addrs((netinfo_cell_t*)inp, idx);
}
int
netinfo_cell_set_my_addrs(netinfo_cell_t *inp, size_t idx, struct netinfo_addr_st * elt)
{
netinfo_addr_t *oldval = TRUNNEL_DYNARRAY_GET(&inp->my_addrs, idx);
if (oldval && oldval != elt)
netinfo_addr_free(oldval);
return netinfo_cell_set0_my_addrs(inp, idx, elt);
}
int
netinfo_cell_set0_my_addrs(netinfo_cell_t *inp, size_t idx, struct netinfo_addr_st * elt)
{
TRUNNEL_DYNARRAY_SET(&inp->my_addrs, idx, elt);
return 0;
}
int
netinfo_cell_add_my_addrs(netinfo_cell_t *inp, struct netinfo_addr_st * elt)
{
#if SIZE_MAX >= UINT8_MAX
if (inp->my_addrs.n_ == UINT8_MAX)
goto trunnel_alloc_failed;
#endif
TRUNNEL_DYNARRAY_ADD(struct netinfo_addr_st *, &inp->my_addrs, elt, {});
return 0;
trunnel_alloc_failed:
TRUNNEL_SET_ERROR_CODE(inp);
return -1;
}
struct netinfo_addr_st * *
netinfo_cell_getarray_my_addrs(netinfo_cell_t *inp)
{
return inp->my_addrs.elts_;
}
const struct netinfo_addr_st * const *
netinfo_cell_getconstarray_my_addrs(const netinfo_cell_t *inp)
{
return (const struct netinfo_addr_st * const *)netinfo_cell_getarray_my_addrs((netinfo_cell_t*)inp);
}
int
netinfo_cell_setlen_my_addrs(netinfo_cell_t *inp, size_t newlen)
{
struct netinfo_addr_st * *newptr;
#if UINT8_MAX < SIZE_MAX
if (newlen > UINT8_MAX)
goto trunnel_alloc_failed;
#endif
newptr = trunnel_dynarray_setlen(&inp->my_addrs.allocated_,
&inp->my_addrs.n_, inp->my_addrs.elts_, newlen,
sizeof(inp->my_addrs.elts_[0]), (trunnel_free_fn_t) netinfo_addr_free,
&inp->trunnel_error_code_);
if (newlen != 0 && newptr == NULL)
goto trunnel_alloc_failed;
inp->my_addrs.elts_ = newptr;
return 0;
trunnel_alloc_failed:
TRUNNEL_SET_ERROR_CODE(inp);
return -1;
}
const char *
netinfo_cell_check(const netinfo_cell_t *obj)
{
if (obj == NULL)
return "Object was NULL";
if (obj->trunnel_error_code_)
return "A set function failed on this object";
{
const char *msg;
if (NULL != (msg = netinfo_addr_check(obj->other_addr)))
return msg;
}
{
const char *msg;
unsigned idx;
for (idx = 0; idx < TRUNNEL_DYNARRAY_LEN(&obj->my_addrs); ++idx) {
if (NULL != (msg = netinfo_addr_check(TRUNNEL_DYNARRAY_GET(&obj->my_addrs, idx))))
return msg;
}
}
if (TRUNNEL_DYNARRAY_LEN(&obj->my_addrs) != obj->n_my_addrs)
return "Length mismatch for my_addrs";
return NULL;
}
ssize_t
netinfo_cell_encoded_len(const netinfo_cell_t *obj)
{
ssize_t result = 0;
if (NULL != netinfo_cell_check(obj))
return -1;
/* Length of u32 timestamp */
result += 4;
/* Length of struct netinfo_addr other_addr */
result += netinfo_addr_encoded_len(obj->other_addr);
/* Length of u8 n_my_addrs */
result += 1;
/* Length of struct netinfo_addr my_addrs[n_my_addrs] */
{
unsigned idx;
for (idx = 0; idx < TRUNNEL_DYNARRAY_LEN(&obj->my_addrs); ++idx) {
result += netinfo_addr_encoded_len(TRUNNEL_DYNARRAY_GET(&obj->my_addrs, idx));
}
}
return result;
}
int
netinfo_cell_clear_errors(netinfo_cell_t *obj)
{
int r = obj->trunnel_error_code_;
obj->trunnel_error_code_ = 0;
return r;
}
ssize_t
netinfo_cell_encode(uint8_t *output, const size_t avail, const netinfo_cell_t *obj)
{
ssize_t result = 0;
size_t written = 0;
uint8_t *ptr = output;
const char *msg;
#ifdef TRUNNEL_CHECK_ENCODED_LEN
const ssize_t encoded_len = netinfo_cell_encoded_len(obj);
#endif
if (NULL != (msg = netinfo_cell_check(obj)))
goto check_failed;
#ifdef TRUNNEL_CHECK_ENCODED_LEN
trunnel_assert(encoded_len >= 0);
#endif
/* Encode u32 timestamp */
trunnel_assert(written <= avail);
if (avail - written < 4)
goto truncated;
trunnel_set_uint32(ptr, trunnel_htonl(obj->timestamp));
written += 4; ptr += 4;
/* Encode struct netinfo_addr other_addr */
trunnel_assert(written <= avail);
result = netinfo_addr_encode(ptr, avail - written, obj->other_addr);
if (result < 0)
goto fail; /* XXXXXXX !*/
written += result; ptr += result;
/* Encode u8 n_my_addrs */
trunnel_assert(written <= avail);
if (avail - written < 1)
goto truncated;
trunnel_set_uint8(ptr, (obj->n_my_addrs));
written += 1; ptr += 1;
/* Encode struct netinfo_addr my_addrs[n_my_addrs] */
{
unsigned idx;
for (idx = 0; idx < TRUNNEL_DYNARRAY_LEN(&obj->my_addrs); ++idx) {
trunnel_assert(written <= avail);
result = netinfo_addr_encode(ptr, avail - written, TRUNNEL_DYNARRAY_GET(&obj->my_addrs, idx));
if (result < 0)
goto fail; /* XXXXXXX !*/
written += result; ptr += result;
}
}
trunnel_assert(ptr == output + written);
#ifdef TRUNNEL_CHECK_ENCODED_LEN
{
trunnel_assert(encoded_len >= 0);
trunnel_assert((size_t)encoded_len == written);
}
#endif
return written;
truncated:
result = -2;
goto fail;
check_failed:
(void)msg;
result = -1;
goto fail;
fail:
trunnel_assert(result < 0);
return result;
}
/** As netinfo_cell_parse(), but do not allocate the output object.
*/
static ssize_t
netinfo_cell_parse_into(netinfo_cell_t *obj, const uint8_t *input, const size_t len_in)
{
const uint8_t *ptr = input;
size_t remaining = len_in;
ssize_t result = 0;
(void)result;
/* Parse u32 timestamp */
CHECK_REMAINING(4, truncated);
obj->timestamp = trunnel_ntohl(trunnel_get_uint32(ptr));
remaining -= 4; ptr += 4;
/* Parse struct netinfo_addr other_addr */
result = netinfo_addr_parse(&obj->other_addr, ptr, remaining);
if (result < 0)
goto relay_fail;
trunnel_assert((size_t)result <= remaining);
remaining -= result; ptr += result;
/* Parse u8 n_my_addrs */
CHECK_REMAINING(1, truncated);
obj->n_my_addrs = (trunnel_get_uint8(ptr));
remaining -= 1; ptr += 1;
/* Parse struct netinfo_addr my_addrs[n_my_addrs] */
TRUNNEL_DYNARRAY_EXPAND(netinfo_addr_t *, &obj->my_addrs, obj->n_my_addrs, {});
{
netinfo_addr_t * elt;
unsigned idx;
for (idx = 0; idx < obj->n_my_addrs; ++idx) {
result = netinfo_addr_parse(&elt, ptr, remaining);
if (result < 0)
goto relay_fail;
trunnel_assert((size_t)result <= remaining);
remaining -= result; ptr += result;
TRUNNEL_DYNARRAY_ADD(netinfo_addr_t *, &obj->my_addrs, elt, {netinfo_addr_free(elt);});
}
}
trunnel_assert(ptr + remaining == input + len_in);
return len_in - remaining;
truncated:
return -2;
relay_fail:
trunnel_assert(result < 0);
return result;
trunnel_alloc_failed:
return -1;
}
ssize_t
netinfo_cell_parse(netinfo_cell_t **output, const uint8_t *input, const size_t len_in)
{
ssize_t result;
*output = netinfo_cell_new();
if (NULL == *output)
return -1;
result = netinfo_cell_parse_into(*output, input, len_in);
if (result < 0) {
netinfo_cell_free(*output);
*output = NULL;
}
return result;
}