2018-06-28 18:24:45 +02:00
|
|
|
/* Copyright (c) 2003, Roger Dingledine
|
|
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
|
|
* Copyright (c) 2007-2018, The Tor Project, Inc. */
|
|
|
|
/* See LICENSE for licensing information */
|
|
|
|
|
2018-07-02 02:22:55 +02:00
|
|
|
/**
|
|
|
|
* \file laplace.c
|
|
|
|
*
|
|
|
|
* \brief Implements a Laplace distribution, used for adding noise to things.
|
|
|
|
**/
|
|
|
|
|
2018-06-28 18:24:45 +02:00
|
|
|
#include "orconfig.h"
|
|
|
|
#include "lib/math/laplace.h"
|
|
|
|
#include "lib/math/fp.h"
|
|
|
|
|
|
|
|
#include "lib/log/util_bug.h"
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
/** Transform a random value <b>p</b> from the uniform distribution in
|
|
|
|
* [0.0, 1.0[ into a Laplace distributed value with location parameter
|
|
|
|
* <b>mu</b> and scale parameter <b>b</b>. Truncate the final result
|
|
|
|
* to be an integer in [INT64_MIN, INT64_MAX]. */
|
|
|
|
int64_t
|
|
|
|
sample_laplace_distribution(double mu, double b, double p)
|
|
|
|
{
|
|
|
|
double result;
|
|
|
|
tor_assert(p >= 0.0 && p < 1.0);
|
|
|
|
|
|
|
|
/* This is the "inverse cumulative distribution function" from:
|
|
|
|
* http://en.wikipedia.org/wiki/Laplace_distribution */
|
|
|
|
if (p <= 0.0) {
|
|
|
|
/* Avoid taking log(0.0) == -INFINITY, as some processors or compiler
|
|
|
|
* options can cause the program to trap. */
|
|
|
|
return INT64_MIN;
|
|
|
|
}
|
|
|
|
|
|
|
|
result = mu - b * (p > 0.5 ? 1.0 : -1.0)
|
|
|
|
* tor_mathlog(1.0 - 2.0 * fabs(p - 0.5));
|
|
|
|
|
|
|
|
return clamp_double_to_int64(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Add random noise between INT64_MIN and INT64_MAX coming from a Laplace
|
|
|
|
* distribution with mu = 0 and b = <b>delta_f</b>/<b>epsilon</b> to
|
|
|
|
* <b>signal</b> based on the provided <b>random</b> value in [0.0, 1.0[.
|
|
|
|
* The epsilon value must be between ]0.0, 1.0]. delta_f must be greater
|
|
|
|
* than 0. */
|
|
|
|
int64_t
|
|
|
|
add_laplace_noise(int64_t signal_, double random_, double delta_f,
|
|
|
|
double epsilon)
|
|
|
|
{
|
|
|
|
int64_t noise;
|
|
|
|
|
|
|
|
/* epsilon MUST be between ]0.0, 1.0] */
|
|
|
|
tor_assert(epsilon > 0.0 && epsilon <= 1.0);
|
|
|
|
/* delta_f MUST be greater than 0. */
|
|
|
|
tor_assert(delta_f > 0.0);
|
|
|
|
|
|
|
|
/* Just add noise, no further signal */
|
|
|
|
noise = sample_laplace_distribution(0.0,
|
|
|
|
delta_f / epsilon,
|
|
|
|
random_);
|
|
|
|
|
|
|
|
/* Clip (signal + noise) to [INT64_MIN, INT64_MAX] */
|
|
|
|
if (noise > 0 && INT64_MAX - noise < signal_)
|
|
|
|
return INT64_MAX;
|
|
|
|
else if (noise < 0 && INT64_MIN - noise > signal_)
|
|
|
|
return INT64_MIN;
|
|
|
|
else
|
|
|
|
return signal_ + noise;
|
|
|
|
}
|