tor/src/or/hs_descriptor.c

769 lines
26 KiB
C
Raw Normal View History

/* Copyright (c) 2016, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file hs_descriptor.c
* \brief Handle hidden service descriptor encoding/decoding.
**/
#include "hs_descriptor.h"
#include "or.h"
#include "ed25519_cert.h" /* Trunnel interface. */
/* Constant string value used for the descriptor format. */
static const char *str_hs_desc = "hs-descriptor";
static const char *str_desc_cert = "descriptor-signing-key-cert";
static const char *str_rev_counter = "revision-counter";
static const char *str_encrypted = "encrypted";
static const char *str_signature = "signature";
static const char *str_lifetime = "descriptor-lifetime";
/* Constant string value for the encrypted part of the descriptor. */
static const char *str_create2_formats = "create2-formats";
static const char *str_auth_required = "authentication-required";
static const char *str_intro_point = "introduction-point";
static const char *str_ip_auth_key = "auth-key";
static const char *str_ip_enc_key = "enc-key";
static const char *str_ip_enc_key_cert = "enc-key-certification";
/* Constant string value for the construction to encrypt the encrypted data
* section. */
static const char *str_enc_hsdir_data = "hsdir-encrypted-data";
/* Encode the ed25519 certificate <b>cert</b> and put the newly allocated
* string in <b>cert_str_out</b>. Return 0 on success else a negative value. */
static int
encode_cert(const tor_cert_t *cert, char **cert_str_out)
{
int ret = -1;
char *ed_cert_b64 = NULL;
size_t ed_cert_b64_len;
tor_assert(cert);
tor_assert(cert_str_out);
/* Get the encoded size and add the NUL byte. */
ed_cert_b64_len = base64_encode_size(cert->encoded_len,
BASE64_ENCODE_MULTILINE) + 1;
ed_cert_b64 = tor_malloc_zero(ed_cert_b64_len);
/* Base64 encode the encoded certificate. */
if (base64_encode(ed_cert_b64, ed_cert_b64_len,
(const char *) cert->encoded, cert->encoded_len,
BASE64_ENCODE_MULTILINE) < 0) {
log_err(LD_BUG, "Couldn't base64-encode descriptor signing key cert!");
goto err;
}
/* Put everything together in a NUL terminated string. */
tor_asprintf(cert_str_out,
"-----BEGIN ED25519 CERT-----\n"
"%s"
"-----END ED25519 CERT-----",
ed_cert_b64);
/* Success! */
ret = 0;
err:
tor_free(ed_cert_b64);
return ret;
}
/* Encode the given link specifier objects into a newly allocated string.
* This can't fail so caller can always assume a valid string being
* returned. */
static char *
encode_link_specifiers(const smartlist_t *specs)
{
char *encoded_b64 = NULL;
link_specifier_list_t *lslist = link_specifier_list_new();
tor_assert(specs);
/* No link specifiers is a code flow error, can't happen. */
tor_assert(smartlist_len(specs) > 0);
tor_assert(smartlist_len(specs) <= UINT8_MAX);
link_specifier_list_set_n_spec(lslist, smartlist_len(specs));
SMARTLIST_FOREACH_BEGIN(specs, const hs_desc_link_specifier_t *,
spec) {
link_specifier_t *ls = link_specifier_new();
link_specifier_set_ls_type(ls, spec->type);
switch (spec->type) {
case LS_IPV4:
link_specifier_set_un_ipv4_addr(ls,
tor_addr_to_ipv4h(&spec->u.ap.addr));
link_specifier_set_un_ipv4_port(ls, spec->u.ap.port);
/* Four bytes IPv4 and two bytes port. */
link_specifier_set_ls_len(ls, sizeof(spec->u.ap.addr.addr.in_addr) +
sizeof(spec->u.ap.port));
break;
case LS_IPV6:
{
size_t addr_len = link_specifier_getlen_un_ipv6_addr(ls);
const uint8_t *in6_addr = tor_addr_to_in6_addr8(&spec->u.ap.addr);
uint8_t *ipv6_array = link_specifier_getarray_un_ipv6_addr(ls);
memcpy(ipv6_array, in6_addr, addr_len);
link_specifier_set_un_ipv6_port(ls, spec->u.ap.port);
/* Sixteen bytes IPv6 and two bytes port. */
link_specifier_set_ls_len(ls, addr_len + sizeof(spec->u.ap.port));
break;
}
case LS_LEGACY_ID:
{
size_t legacy_id_len = link_specifier_getlen_un_legacy_id(ls);
uint8_t *legacy_id_array = link_specifier_getarray_un_legacy_id(ls);
memcpy(legacy_id_array, spec->u.legacy_id, legacy_id_len);
link_specifier_set_ls_len(ls, legacy_id_len);
break;
}
default:
tor_assert(0);
}
link_specifier_list_add_spec(lslist, ls);
} SMARTLIST_FOREACH_END(spec);
{
uint8_t *encoded;
ssize_t encoded_len, encoded_b64_len, ret;
encoded_len = link_specifier_list_encoded_len(lslist);
tor_assert(encoded_len > 0);
encoded = tor_malloc_zero(encoded_len);
ret = link_specifier_list_encode(encoded, encoded_len, lslist);
tor_assert(ret == encoded_len);
/* Base64 encode our binary format. Add extra NUL byte for the base64
* encoded value. */
encoded_b64_len = base64_encode_size(encoded_len, 0) + 1;
encoded_b64 = tor_malloc_zero(encoded_b64_len);
ret = base64_encode(encoded_b64, encoded_b64_len, (const char *) encoded,
encoded_len, 0);
tor_assert(ret == (encoded_b64_len - 1));
tor_free(encoded);
}
link_specifier_list_free(lslist);
return encoded_b64;
}
/* Encode an introduction point encryption key and return a newly allocated
* string with it. On failure, return NULL. */
static char *
encode_enc_key(const ed25519_keypair_t *sig_key,
const hs_desc_intro_point_t *ip)
{
char *encoded = NULL;
time_t now = time(NULL);
tor_assert(sig_key);
tor_assert(ip);
switch (ip->enc_key_type) {
case HS_DESC_KEY_TYPE_LEGACY:
{
char *key_str, b64_cert[256];
ssize_t cert_len;
size_t key_str_len;
uint8_t *cert_data;
/* Create cross certification cert. */
cert_len = tor_make_rsa_ed25519_crosscert(&sig_key->pubkey,
ip->enc_key.legacy,
now + HS_DESC_CERT_LIFETIME,
&cert_data);
if (cert_len < 0) {
log_warn(LD_REND, "Unable to create legacy crosscert.");
goto err;
}
/* Encode cross cert. */
if (base64_encode(b64_cert, sizeof(b64_cert), (const char *) cert_data,
cert_len, BASE64_ENCODE_MULTILINE) < 0) {
log_warn(LD_REND, "Unable to encode legacy crosscert.");
goto err;
}
/* Convert the encryption key to a string. */
if (crypto_pk_write_public_key_to_string(ip->enc_key.legacy, &key_str,
&key_str_len) < 0) {
log_warn(LD_REND, "Unable to encode legacy encryption key.");
goto err;
}
tor_asprintf(&encoded,
"%s legacy\n%s" /* Newline is added by the call above. */
"%s\n"
"-----BEGIN CROSSCERT-----\n"
"%s"
"-----END CROSSCERT-----",
str_ip_enc_key, key_str,
str_ip_enc_key_cert, b64_cert);
tor_free(key_str);
break;
}
case HS_DESC_KEY_TYPE_CURVE25519:
{
int signbit;
char *encoded_cert, key_fp_b64[CURVE25519_BASE64_PADDED_LEN + 1];
ed25519_keypair_t curve_kp;
if (ed25519_keypair_from_curve25519_keypair(&curve_kp, &signbit,
&ip->enc_key.curve25519)) {
goto err;
}
tor_cert_t *cross_cert = tor_cert_create(&curve_kp, CERT_TYPE_HS_IP_ENC,
&sig_key->pubkey, now,
HS_DESC_CERT_LIFETIME,
CERT_FLAG_INCLUDE_SIGNING_KEY);
memwipe(&curve_kp, 0, sizeof(curve_kp));
if (!cross_cert) {
goto err;
}
if (encode_cert(cross_cert, &encoded_cert)) {
goto err;
}
if (curve25519_public_to_base64(key_fp_b64,
&ip->enc_key.curve25519.pubkey) < 0) {
tor_free(encoded_cert);
goto err;
}
tor_asprintf(&encoded,
"%s ntor %s\n"
"%s\n%s",
str_ip_enc_key, key_fp_b64,
str_ip_enc_key_cert, encoded_cert);
tor_free(encoded_cert);
break;
}
default:
tor_assert(0);
}
err:
return encoded;
}
/* Encode an introduction point object and return a newly allocated string
* with it. On failure, return NULL. */
static char *
encode_intro_point(const ed25519_keypair_t *sig_key,
const hs_desc_intro_point_t *ip)
{
char *encoded_ip = NULL;
smartlist_t *lines = smartlist_new();
tor_assert(ip);
tor_assert(sig_key);
/* Encode link specifier. */
{
char *ls_str = encode_link_specifiers(ip->link_specifiers);
smartlist_add_asprintf(lines, "%s %s", str_intro_point, ls_str);
tor_free(ls_str);
}
/* Authentication key encoding. */
{
char *encoded_cert;
if (encode_cert(ip->auth_key_cert, &encoded_cert) < 0) {
goto err;
}
smartlist_add_asprintf(lines, "%s\n%s", str_ip_auth_key, encoded_cert);
tor_free(encoded_cert);
}
/* Encryption key encoding. */
{
char *encoded_enc_key = encode_enc_key(sig_key, ip);
if (encoded_enc_key == NULL) {
goto err;
}
smartlist_add_asprintf(lines, "%s", encoded_enc_key);
tor_free(encoded_enc_key);
}
/* Join them all in one blob of text. */
encoded_ip = smartlist_join_strings(lines, "\n", 1, NULL);
err:
SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
smartlist_free(lines);
return encoded_ip;
}
/* Using a given decriptor object, build the secret input needed for the
* KDF and put it in the dst pointer which is an already allocated buffer
* of size dstlen. */
static void
build_secret_input(const hs_descriptor_t *desc, uint8_t *dst, size_t dstlen)
{
size_t offset = 0;
tor_assert(desc);
tor_assert(dst);
tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN <= dstlen);
/* XXX use the destination length as the memcpy length */
/* Copy blinded public key. */
memcpy(dst, desc->plaintext_data.blinded_kp.pubkey.pubkey,
sizeof(desc->plaintext_data.blinded_kp.pubkey.pubkey));
offset += sizeof(desc->plaintext_data.blinded_kp.pubkey.pubkey);
/* Copy subcredential. */
memcpy(dst + offset, desc->subcredential, sizeof(desc->subcredential));
offset += sizeof(desc->subcredential);
/* Copy revision counter value. */
set_uint64(dst + offset, tor_ntohll(desc->plaintext_data.revision_counter));
offset += sizeof(uint64_t);
tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN == offset);
}
/* Do the KDF construction and put the resulting data in key_out which is of
* key_out_len length. It uses SHAKE-256 as specified in the spec. */
static void
build_kdf_key(const hs_descriptor_t *desc,
const uint8_t *salt, size_t salt_len,
uint8_t *key_out, size_t key_out_len)
{
uint8_t secret_input[HS_DESC_ENCRYPTED_SECRET_INPUT_LEN];
crypto_xof_t *xof;
tor_assert(desc);
tor_assert(salt);
tor_assert(key_out);
/* Build the secret input for the KDF computation. */
build_secret_input(desc, secret_input, sizeof(secret_input));
xof = crypto_xof_new();
/* Feed our KDF. [SHAKE it like a polaroid picture --Yawning]. */
crypto_xof_add_bytes(xof, secret_input, sizeof(secret_input));
crypto_xof_add_bytes(xof, salt, salt_len);
crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_hsdir_data,
strlen(str_enc_hsdir_data));
/* Eat from our KDF. */
crypto_xof_squeeze_bytes(xof, key_out, key_out_len);
crypto_xof_free(xof);
memwipe(secret_input, 0, sizeof(secret_input));
}
/* Using the given descriptor and salt, run it through our KDF function and
* then extract a secret key in key_out, the IV in iv_out and MAC in mac_out.
* This function can't fail. */
static void
build_secret_key_iv_mac(const hs_descriptor_t *desc,
const uint8_t *salt, size_t salt_len,
uint8_t *key_out, size_t key_len,
uint8_t *iv_out, size_t iv_len,
uint8_t *mac_out, size_t mac_len)
{
size_t offset = 0;
uint8_t kdf_key[HS_DESC_ENCRYPTED_KDF_OUTPUT_LEN];
tor_assert(desc);
tor_assert(salt);
tor_assert(key_out);
tor_assert(iv_out);
tor_assert(mac_out);
build_kdf_key(desc, salt, salt_len, kdf_key, sizeof(kdf_key));
/* Copy the bytes we need for both the secret key and IV. */
memcpy(key_out, kdf_key, key_len);
offset += key_len;
memcpy(iv_out, kdf_key + offset, iv_len);
offset += iv_len;
memcpy(mac_out, kdf_key + offset, mac_len);
/* Extra precaution to make sure we are not out of bound. */
tor_assert((offset + mac_len) == sizeof(kdf_key));
memwipe(kdf_key, 0, sizeof(kdf_key));
}
/* Using a key, salt and encrypted payload, build a MAC and put it in mac_out.
* The length of the mac key and salt must be fixed and if not, you can't rely
* on the result to be a valid MAC. We use SHA3-256 for the MAC computation.
* This function can't fail. */
static void
build_mac(const uint8_t *mac_key, size_t mac_key_len,
const uint8_t *salt, size_t salt_len,
const uint8_t *encrypted, size_t encrypted_len,
uint8_t *mac_out, size_t mac_len)
{
crypto_digest_t *digest;
tor_assert(mac_key);
tor_assert(salt);
tor_assert(encrypted);
tor_assert(mac_out);
digest = crypto_digest256_new(DIGEST_SHA3_256);
/* As specified in section 2.5 of proposal 224, first add the mac key
* then add the salt first and then the encrypted section. */
crypto_digest_add_bytes(digest, (const char *) mac_key, mac_key_len);
crypto_digest_add_bytes(digest, (const char *) salt, salt_len);
crypto_digest_add_bytes(digest, (const char *) encrypted, encrypted_len);
crypto_digest_get_digest(digest, (char *) mac_out, mac_len);
crypto_digest_free(digest);
}
/* Given a source length, return the new size including padding for the
* plaintext encryption. */
static size_t
compute_padded_plaintext_length(size_t plaintext_len)
{
size_t plaintext_padded_len;
/* Make sure we won't overflow. */
tor_assert(plaintext_len <=
(SIZE_T_CEILING - HS_DESC_PLAINTEXT_PADDING_MULTIPLE));
/* Get the extra length we need to add. For example, if srclen is 234 bytes,
* this will expand to (2 * 128) == 256 thus an extra 22 bytes. */
plaintext_padded_len = CEIL_DIV(plaintext_len,
HS_DESC_PLAINTEXT_PADDING_MULTIPLE) *
HS_DESC_PLAINTEXT_PADDING_MULTIPLE;
/* Can never be extra careful. Make sure we are _really_ padded. */
tor_assert(!(plaintext_padded_len % HS_DESC_PLAINTEXT_PADDING_MULTIPLE));
return plaintext_padded_len;
}
/* Given a buffer, pad it up to the encrypted section padding requirement. Set
* the newly allocated string in padded_out and return the length of the
* padded buffer. */
static size_t
build_plaintext_padding(const char *plaintext, size_t plaintext_len,
uint8_t **padded_out)
{
size_t padded_len;
uint8_t *padded;
tor_assert(plaintext);
tor_assert(padded_out);
/* Allocate the final length including padding. */
padded_len = compute_padded_plaintext_length(plaintext_len);
tor_assert(padded_len >= plaintext_len);
padded = tor_malloc_zero(padded_len);
memcpy(padded, plaintext, plaintext_len);
*padded_out = padded;
return padded_len;
}
/* Using a key, IV and plaintext data of length plaintext_len, create the
* encrypted section by encrypting it and setting encrypted_out with the
* data. Return size of the encrypted data buffer. */
static size_t
build_encrypted(const uint8_t *key, const uint8_t *iv, const char *plaintext,
size_t plaintext_len, uint8_t **encrypted_out)
{
size_t encrypted_len;
uint8_t *padded_plaintext, *encrypted;
crypto_cipher_t *cipher;
tor_assert(key);
tor_assert(iv);
tor_assert(plaintext);
tor_assert(encrypted_out);
/* This creates a cipher for AES128. It can't fail. */
cipher = crypto_cipher_new_with_iv((const char *) key, (const char *) iv);
/* This can't fail. */
encrypted_len = build_plaintext_padding(plaintext, plaintext_len,
&padded_plaintext);
/* Extra precautions that we have a valie padding length. */
tor_assert(encrypted_len <= HS_DESC_PADDED_PLAINTEXT_MAX_LEN);
tor_assert(!(encrypted_len % HS_DESC_PLAINTEXT_PADDING_MULTIPLE));
/* We use a stream cipher so the encrypted length will be the same as the
* plaintext padded length. */
encrypted = tor_malloc_zero(encrypted_len);
/* This can't fail. */
crypto_cipher_encrypt(cipher, (char *) encrypted,
(const char *) padded_plaintext, encrypted_len);
*encrypted_out = encrypted;
/* Cleanup. */
crypto_cipher_free(cipher);
tor_free(padded_plaintext);
return encrypted_len;
}
/* Encrypt the given plaintext buffer and using the descriptor to get the
* keys. Set encrypted_out with the encrypted data and return the length of
* it. */
static size_t
encrypt_descriptor_data(const hs_descriptor_t *desc, const char *plaintext,
char **encrypted_out)
{
char *final_blob;
size_t encrypted_len, final_blob_len, offset = 0;
uint8_t *encrypted;
uint8_t salt[HS_DESC_ENCRYPTED_SALT_LEN];
uint8_t secret_key[CIPHER_KEY_LEN], secret_iv[CIPHER_IV_LEN];
uint8_t mac_key[DIGEST256_LEN], mac[DIGEST256_LEN];
tor_assert(desc);
tor_assert(plaintext);
tor_assert(encrypted_out);
/* Get our salt. The returned bytes are already hashed. */
crypto_strongest_rand(salt, sizeof(salt));
/* KDF construction resulting in a key from which the secret key, IV and MAC
* key are extracted which is what we need for the encryption. */
build_secret_key_iv_mac(desc, salt, sizeof(salt),
secret_key, sizeof(secret_key),
secret_iv, sizeof(secret_iv),
mac_key, sizeof(mac_key));
/* Build the encrypted part that is do the actual encryption. */
encrypted_len = build_encrypted(secret_key, secret_iv, plaintext,
strlen(plaintext), &encrypted);
memwipe(secret_key, 0, sizeof(secret_key));
memwipe(secret_iv, 0, sizeof(secret_iv));
/* This construction is specified in section 2.5 of proposal 224. */
final_blob_len = sizeof(salt) + encrypted_len + DIGEST256_LEN;
final_blob = tor_malloc_zero(final_blob_len);
/* Build the MAC. */
build_mac(mac_key, sizeof(mac_key), salt, sizeof(salt),
encrypted, encrypted_len, mac, sizeof(mac));
memwipe(mac_key, 0, sizeof(mac_key));
/* The salt is the first value. */
memcpy(final_blob, salt, sizeof(salt));
offset = sizeof(salt);
/* Second value is the encrypted data. */
memcpy(final_blob + offset, encrypted, encrypted_len);
offset += encrypted_len;
/* Third value is the MAC. */
memcpy(final_blob + offset, mac, sizeof(mac));
offset += sizeof(mac);
/* Cleanup the buffers. */
memwipe(salt, 0, sizeof(salt));
memwipe(encrypted, 0, encrypted_len);
tor_free(encrypted);
/* Extra precaution. */
tor_assert(offset == final_blob_len);
*encrypted_out = final_blob;
return final_blob_len;
}
/* Take care of encoding the encrypted data section and then encrypting it
* with the descriptor's key. A newly allocated NUL terminated string pointer
* containing the encrypted encoded blob is put in encrypted_blob_out. Return
* 0 on success else a negative value. */
static int
encode_encrypted_data(const hs_descriptor_t *desc,
char **encrypted_blob_out)
{
int ret = -1;
char *encoded_str, *encrypted_blob;
smartlist_t *lines = smartlist_new();
tor_assert(desc);
tor_assert(encrypted_blob_out);
/* Build the start of the section prior to the introduction points. */
{
if (!desc->encrypted_data.create2_ntor) {
log_err(LD_BUG, "HS desc doesn't have recognized handshake type.");
goto err;
}
smartlist_add_asprintf(lines, "%s %d\n", str_create2_formats,
ONION_HANDSHAKE_TYPE_NTOR);
if (desc->encrypted_data.auth_types &&
smartlist_len(desc->encrypted_data.auth_types)) {
/* Put the authentication-required line. */
char *buf = smartlist_join_strings(desc->encrypted_data.auth_types, " ",
0, NULL);
smartlist_add_asprintf(lines, "%s %s\n", str_auth_required, buf);
tor_free(buf);
}
}
/* Build the introduction point(s) section. */
SMARTLIST_FOREACH_BEGIN(desc->encrypted_data.intro_points,
const hs_desc_intro_point_t *, ip) {
char *encoded_ip = encode_intro_point(&desc->plaintext_data.signing_kp,
ip);
if (encoded_ip == NULL) {
log_err(LD_BUG, "HS desc intro point is malformed.");
goto err;
}
smartlist_add(lines, encoded_ip);
} SMARTLIST_FOREACH_END(ip);
/* Build the entire encrypted data section into one encoded plaintext and
* then encrypt it. */
encoded_str = smartlist_join_strings(lines, "", 0, NULL);
/* Encrypt the section into an encrypted blob that we'll base64 encode
* before returning it. */
{
char *enc_b64;
ssize_t enc_b64_len, ret_len, enc_len;
enc_len = encrypt_descriptor_data(desc, encoded_str, &encrypted_blob);
tor_free(encoded_str);
/* Get the encoded size plus a NUL terminating byte. */
enc_b64_len = base64_encode_size(enc_len, BASE64_ENCODE_MULTILINE) + 1;
enc_b64 = tor_malloc_zero(enc_b64_len);
/* Base64 the encrypted blob before returning it. */
ret_len = base64_encode(enc_b64, enc_b64_len, encrypted_blob, enc_len,
BASE64_ENCODE_MULTILINE);
/* Return length doesn't count the NUL byte. */
tor_assert(ret_len == (enc_b64_len - 1));
tor_free(encrypted_blob);
*encrypted_blob_out = enc_b64;
}
/* Success! */
ret = 0;
err:
SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
smartlist_free(lines);
return ret;
}
/* Encode a v3 HS descriptor. Return 0 on success and set encoded_out to the
* newly allocated string of the encoded descriptor. On error, -1 is returned
* and encoded_out is untouched. */
static int
desc_encode_v3(const hs_descriptor_t *desc, char **encoded_out)
{
int ret = -1;
char *encoded_str = NULL;
size_t encoded_len;
smartlist_t *lines = smartlist_new();
tor_assert(desc);
tor_assert(encoded_out);
tor_assert(desc->plaintext_data.version == 3);
/* Build the non-encrypted values. */
{
char *encoded_cert;
/* Encode certificate then create the first line of the descriptor. */
if (desc->plaintext_data.signing_key_cert->cert_type
!= CERT_TYPE_HS_DESC_SIGN) {
log_err(LD_BUG, "HS descriptor signing key has an unexpected cert type "
"(%d)", (int) desc->plaintext_data.signing_key_cert->cert_type);
goto err;
}
if (encode_cert(desc->plaintext_data.signing_key_cert,
&encoded_cert) < 0) {
/* The function will print error logs. */
goto err;
}
/* Create the hs descriptor line. */
smartlist_add_asprintf(lines, "%s %" PRIu32, str_hs_desc,
desc->plaintext_data.version);
/* Add the descriptor lifetime line (in minutes). */
smartlist_add_asprintf(lines, "%s %" PRIu32, str_lifetime,
desc->plaintext_data.lifetime_sec / 60);
/* Create the descriptor certificate line. */
smartlist_add_asprintf(lines, "%s\n%s", str_desc_cert, encoded_cert);
tor_free(encoded_cert);
/* Create the revision counter line. */
smartlist_add_asprintf(lines, "%s %" PRIu64, str_rev_counter,
desc->plaintext_data.revision_counter);
}
/* Build the encrypted data section. */
{
char *enc_b64_blob;
if (encode_encrypted_data(desc, &enc_b64_blob) < 0) {
goto err;
}
smartlist_add_asprintf(lines,
"%s\n"
"-----BEGIN MESSAGE-----\n"
"%s"
"-----END MESSAGE-----",
str_encrypted, enc_b64_blob);
tor_free(enc_b64_blob);
}
/* Join all lines in one string so we can generate a signature and append
* it to the descriptor. */
encoded_str = smartlist_join_strings(lines, "\n", 1, &encoded_len);
/* Sign all fields of the descriptor with our short term signing key. */
{
/* XXX: Add signature prefix. */
ed25519_signature_t sig;
char ed_sig_b64[ED25519_SIG_BASE64_LEN + 1];
if (ed25519_sign(&sig, (const uint8_t *) encoded_str, encoded_len,
&desc->plaintext_data.signing_kp) < 0) {
log_warn(LD_BUG, "Can't sign encoded HS descriptor!");
tor_free(encoded_str);
goto err;
}
if (ed25519_signature_to_base64(ed_sig_b64, &sig) < 0) {
log_warn(LD_BUG, "Can't base64 encode descriptor signature!");
tor_free(encoded_str);
goto err;
}
/* Create the signature line. */
smartlist_add_asprintf(lines, "%s %s", str_signature, ed_sig_b64);
}
/* Free previous string that we used so compute the signature. */
tor_free(encoded_str);
encoded_str = smartlist_join_strings(lines, "\n", 1, NULL);
*encoded_out = encoded_str;
/* XXX: Decode the generated descriptor as an extra validation. */
/* XXX: Trigger a control port event. */
/* Success! */
ret = 0;
err:
SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
smartlist_free(lines);
return ret;
}
/* Table of encode function version specific. The function are indexed by the
* version number so v3 callback is at index 3 in the array. */
static int
(*encode_handlers[])(
const hs_descriptor_t *desc,
char **encoded_out) =
{
/* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
desc_encode_v3,
};
/* Encode the given descriptor desc. On success, encoded_out points to a newly
* allocated NUL terminated string that contains the encoded descriptor as a
* string.
*
* Return 0 on success and encoded_out is a valid pointer. On error, -1 is
* returned and encoded_out is untouched. */
int
hs_desc_encode_descriptor(const hs_descriptor_t *desc, char **encoded_out)
{
int ret = -1;
tor_assert(desc);
tor_assert(encoded_out);
/* Make sure we support the version of the descriptor format. */
if (!hs_desc_is_supported_version(desc->plaintext_data.version)) {
goto err;
}
/* Extra precaution. Having no handler for the supported version should
* never happened else we forgot to add it but we bumped the version. */
tor_assert(ARRAY_LENGTH(encode_handlers) >= desc->plaintext_data.version);
tor_assert(encode_handlers[desc->plaintext_data.version]);
ret = encode_handlers[desc->plaintext_data.version](desc, encoded_out);
if (ret < 0) {
goto err;
}
err:
return ret;
}