tor/doc/spec/proposals/126-geoip-reporting.txt

236 lines
10 KiB
Plaintext
Raw Normal View History

Filename: 126-geoip-fetching.txt
Title: Getting GeoIP data and publishing usage summaries
Version: $Revision: 11988 $
Last-Modified: $Date: 2007-10-16 12:59:42 -0400 (Tue, 16 Oct 2007) $
Author: Roger Dingledine
Created: 2007-11-24
Status: Researching
1. Background and motivation
Right now we can keep a rough count of Tor users, both total and by
country, by watching connections to a single directory mirror. Being
able to get usage estimates is useful both for our funders (to
demonstrate progress) and for our own development (so we know how
quickly we're scaling and can design accordingly, and so we know which
countries and communities to focus on more). This need for information
is the only reason we haven't deployed "directory guards" (think of
them like entry guards but for directory information; in practice,
it would seem that Tor clients should simply use their entry guards
as their directory guards; see also proposal 125).
With the move toward bridges, we will no longer be able to track Tor
clients that use bridges, since they use their bridges as directory
guards. Further, we need to be able to learn which bridges stop seeing
use from certain countries (and are thus likely blocked), so we can
avoid giving them out to other users in those countries.
Right now we already do GeoIP lookups in Vidalia: Vidalia draws relays
and circuits on its 'network map', and it performs anonymized GeoIP
lookups to its central servers to know where to put the dots. Vidalia
caches answers it gets -- to reduce delay, to reduce overhead on
the network, and to reduce anonymity issues where users reveal their
knowledge about the network through which IP addresses they ask about.
But with the advent of bridges, Tor clients are asking about IP
addresses that aren't in the main directory. In particular, bridge
users inform the central Vidalia servers about each bridge as they
discover it and their Vidalia tries to map it.
Also, we wouldn't mind letting Vidalia do a GeoIP lookup on the client's
own IP address, so it can provide a more useful map.
Finally, Vidalia's central servers leave users open to partitioning
attacks, even if they can't target specific users. Further, as we
start using GeoIP results for more operational or security-relevant
goals, such as avoiding or including particular countries in circuits,
it becomes more important that users can't be singled out in terms of
their IP-to-country mapping beliefs.
2. The available GeoIP databases
There are at least two classes of GeoIP database out there: "IP to
country", which tells us the country code for the IP address but
no more details, and "IP to city", which tells us the country code,
the name of the city, and some basic latitude/longitude guesses.
A recent ip-to-country.csv is 3421362 bytes. Compressed, it is 564252
bytes. A typical line is:
"205500992","208605279","US","USA","UNITED STATES"
http://ip-to-country.webhosting.info/node/view/5
Similarly, the maxmind GeoLite Country database is also about 500KB
compressed.
http://www.maxmind.com/app/geolitecountry
The maxmind GeoLite City database gives more finegrained detail like
as geo coordinates and city name. Vidalia currently makes use of this
information. On the other hand it's 16MB compressed. A typical line is:
206.124.149.146,Bellevue,WA,US,47.6051,-122.1134
http://www.maxmind.com/app/geolitecity
There are other databases out there, like
http://www.hostip.info/faq.html
http://www.webconfs.com/ip-to-city.php
that want more attention, but for now let's assume that all the db's
are around this size.
3. What we'd like to solve
Goal #1a: Tor relays collect IP-to-country user stats and publish
sanitized versions.
Goal #1b: Tor bridges collect IP-to-country user stats and publish
sanitized versions.
Goal #2a: Vidalia learns IP-to-city stats for Tor relays, for better
mapping.
Goal #2b: Vidalia learns IP-to-country stats for Tor relays, so the user
can pick countries for her paths.
Goal #3: Vidalia doesn't do external lookups on bridge relay addresses.
Goal #4: Vidalia resolves the Tor client's IP-to-country or IP-to-city
for better mapping.
Goal #5: Reduce partitioning opportunities where Vidalia central
servers can give different (distinguishing) responses.
4. Solution overview
Our goal is to allow Tor relays, bridges, and clients to learn enough
GeoIP information so they can do local private queries.
4.1. The IP-to-country db
Directory authorities should publish a "geoip" file that contains
IP-to-country mappings. Directory caches will mirror it, and Tor clients
and relays (including bridge relays) will fetch it. Thus we can solve
goals 1a and 1b (publish sanitized usage info). Controllers could also
use this to solve goal 2b (choosing path by country attributes). It
also solves goal 4 (learning the Tor client's country), though for
huge countries like the US we'd still need to decide where the "middle"
should be when we're mapping that address.
The IP-to-country details are described further in Sections 5 and
6 below.
4.2. The IP-to-city db
In an ideal world, the IP-to-city db would be small enough that we
could distribute it in the above manner too. But for now, it is too
large. Here's where the design choice forks.
Option A: Vidalia should continue doing its anonymized IP-to-city
queries. Thus we can achieve goals 2a and 2b. We would solve goal
3 by only doing lookups on descriptors that are purpose "general"
(see Section 4.2.1 for how). We would leave goal 5 unsolved.
Option B: Each directory authority should keep an IP-to-city db,
lookup the value for each router it lists, and include that line in
the router's network-status entry. The network-status consensus would
then use the line that appears in the majority of votes. This approach
also solves goals 2a and 2b, goal 3 (Vidalia doesn't do any lookups
at all now), and goal 5 (reduced partitioning risks).
Option B has the advantage that Vidalia can simplify its operation,
and the advantage that this consensus IP-to-city data is available to
other controllers besides just Vidalia. But it has the disadvantage
that the networkstatus consensus becomes larger, even though most of
the GeoIP information won't change from one consensus to the next. Is
there another reasonable location for it that can provide similar
consensus security properties?
4.2.1. Controllers can query for router annotations
Vidalia needs to stop doing queries on bridge relay IP addresses.
It could do that by only doing lookups on descriptors that are in
the networkstatus consensus, but that precludes designs like Blossom
that might want to map its relay locations. The best answer is that it
should learn the router annotations, with a new controller 'getinfo'
command:
"GETINFO router-annotations/id/<OR identity>" or
"GETINFO router-annotations/name/<OR nickname>"
which would respond with something like
@downloaded-at 2007-11-29 08:06:38
@source "128.31.0.34"
@purpose bridge
[We could also make the answer include the digest for the router in
question, which would enable us to ask GETINFO router-annotations/all.
Is this worth it? -RD]
Then Vidalia can avoid doing lookups on descriptors with purpose
"bridge". Even better would be to add a new annotation "@private true"
so Vidalia can know how to handle new purposes that we haven't created
yet. Vidalia could special-case "bridge" for now, for compatibility
with the current 0.2.0.x-alphas.
4.3. Recommendation
My overall recommendation is that we should implement 4.1 soon
(e.g. early in 0.2.1.x), and we can go with 4.2 option A for now,
with the hope that later we discover a better way to distribute the
IP-to-city info and can switch to 4.2 option B.
Below we discuss more how to go about achieving 4.1.
5. Publishing and caching the GeoIP (IP-to-country) database
Each v3 directory authority should put a copy of the "geoip" file in
its datadirectory. Then its network-status votes should include a hash
of this file (Recommended-geoip-hash: %s), and the resulting consensus
directory should specify the consensus hash.
There should be a new URL for fetching this geoip db (by "current.z"
for testing purposes, and by hash.z for typical downloads). Authorities
should fetch and serve the one listed in the consensus, even when they
vote for their own. This would argue for storing the cached version
in a better filename than "geoip".
Directory mirrors should keep a copy of this file available via the
same URLs.
We assume that the file would change at most a few times a month. Should
Tor ship with a bootstrap geoip file? An out-of-date geoip file may
open you up to partitioning attacks, but for the most part it won't
be that different.
There should be a config option to disable updating the geoip file,
in case users want to use their own file (e.g. they have a proprietary
GeoIP file they prefer to use). In that case we leave it up to the
user to update his geoip file out-of-band.
[XXX Should consider forward/backward compatibility, e.g. if we want
to move to a new geoip file format. -RD]
6. Controllers use the IP-to-country db for mapping and for path building
Down the road, vidalia can use the IP-to-country mappings for placing
on its map:
- The location of the client
- The location of the bridges, or other relays not in the
networkstatus, on the map.
- Any relays that it doesn't yet have an IP-to-city answer for.
Other controllers can also use it to set EntryNodes, ExitNodes, etc
in a per-country way.
To support these features, we need to export the IP-to-country data
via the Tor controller protocol.
Is it sufficient just to add a new GETINFO command?
GETINFO ip-to-country/128.31.0.34
250+ip-to-country/128.31.0.34="US","USA","UNITED STATES"
7. Relays and bridges use the IP-to-country db for usage summaries
Once bridges have a GeoIP database locally, they can start to publish
sanitized summaries of client usage -- how many users they see and from
what countries. This might also be a more useful way for ordinary Tor
relays to convey the level of usage they see, which would allow us to
switch to using directory guards for all users by default.
But how to safely summarize this information without opening too many
anonymity leaks seems hard...