tor/src/lib/crypt_ops/crypto_rsa.c

644 lines
17 KiB
C
Raw Normal View History

/* Copyright (c) 2001, Matej Pfajfar.
* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
2018-06-20 14:13:28 +02:00
* Copyright (c) 2007-2018, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file crypto_rsa.c
* \brief Block of functions related with RSA utilities and operations.
**/
#include "lib/crypt_ops/crypto_cipher.h"
2018-06-21 18:47:11 +02:00
#include "lib/crypt_ops/crypto_curve25519.h"
#include "lib/crypt_ops/crypto_digest.h"
#include "lib/crypt_ops/crypto_format.h"
#include "lib/crypt_ops/compat_openssl.h"
#include "lib/crypt_ops/crypto_rand.h"
#include "lib/crypt_ops/crypto_rsa.h"
#include "lib/crypt_ops/crypto_util.h"
#include "lib/ctime/di_ops.h"
#include "lib/log/util_bug.h"
#include "lib/fs/files.h"
#include "lib/log/log.h"
#include "lib/encoding/binascii.h"
#include "lib/encoding/pem.h"
#include <string.h>
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
/** Return the number of bytes added by padding method <b>padding</b>.
*/
int
crypto_get_rsa_padding_overhead(int padding)
{
switch (padding)
{
case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD;
default: tor_assert(0); return -1; // LCOV_EXCL_LINE
}
}
/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
*/
int
crypto_get_rsa_padding(int padding)
{
switch (padding)
{
case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
default: tor_assert(0); return -1; // LCOV_EXCL_LINE
}
}
/** Compare the public-key components of a and b. Return non-zero iff
* a==b. A NULL key is considered to be distinct from all non-NULL
* keys, and equal to itself.
*
* Note that this may leak information about the keys through timing.
*/
int
crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
return (crypto_pk_cmp_keys(a, b) == 0);
}
/** Perform a hybrid (public/secret) encryption on <b>fromlen</b>
* bytes of data from <b>from</b>, with padding type 'padding',
* storing the results on <b>to</b>.
*
* Returns the number of bytes written on success, -1 on failure.
*
* The encrypted data consists of:
* - The source data, padded and encrypted with the public key, if the
* padded source data is no longer than the public key, and <b>force</b>
* is false, OR
* - The beginning of the source data prefixed with a 16-byte symmetric key,
* padded and encrypted with the public key; followed by the rest of
* the source data encrypted in AES-CTR mode with the symmetric key.
*
* NOTE that this format does not authenticate the symmetrically encrypted
* part of the data, and SHOULD NOT BE USED for new protocols.
*/
int
crypto_pk_obsolete_public_hybrid_encrypt(crypto_pk_t *env,
char *to, size_t tolen,
const char *from,
size_t fromlen,
int padding, int force)
{
int overhead, outlen, r;
size_t pkeylen, symlen;
crypto_cipher_t *cipher = NULL;
char *buf = NULL;
tor_assert(env);
tor_assert(from);
tor_assert(to);
tor_assert(fromlen < SIZE_T_CEILING);
overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding));
pkeylen = crypto_pk_keysize(env);
if (!force && fromlen+overhead <= pkeylen) {
/* It all fits in a single encrypt. */
return crypto_pk_public_encrypt(env,to,
tolen,
from,fromlen,padding);
}
tor_assert(tolen >= fromlen + overhead + CIPHER_KEY_LEN);
tor_assert(tolen >= pkeylen);
char key[CIPHER_KEY_LEN];
crypto_rand(key, sizeof(key)); /* generate a new key. */
cipher = crypto_cipher_new(key);
buf = tor_malloc(pkeylen+1);
memcpy(buf, key, CIPHER_KEY_LEN);
memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);
/* Length of symmetrically encrypted data. */
symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN);
outlen = crypto_pk_public_encrypt(env,to,tolen,buf,pkeylen-overhead,padding);
if (outlen!=(int)pkeylen) {
goto err;
}
r = crypto_cipher_encrypt(cipher, to+outlen,
from+pkeylen-overhead-CIPHER_KEY_LEN, symlen);
if (r<0) goto err;
memwipe(buf, 0, pkeylen);
memwipe(key, 0, sizeof(key));
tor_free(buf);
crypto_cipher_free(cipher);
tor_assert(outlen+symlen < INT_MAX);
return (int)(outlen + symlen);
err:
memwipe(buf, 0, pkeylen);
memwipe(key, 0, sizeof(key));
tor_free(buf);
crypto_cipher_free(cipher);
return -1;
}
/** Invert crypto_pk_obsolete_public_hybrid_encrypt. Returns the number of
* bytes written on success, -1 on failure.
*
* NOTE that this format does not authenticate the symmetrically encrypted
* part of the data, and SHOULD NOT BE USED for new protocols.
*/
int
crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env,
char *to,
size_t tolen,
const char *from,
size_t fromlen,
int padding, int warnOnFailure)
{
int outlen, r;
size_t pkeylen;
crypto_cipher_t *cipher = NULL;
char *buf = NULL;
tor_assert(fromlen < SIZE_T_CEILING);
pkeylen = crypto_pk_keysize(env);
if (fromlen <= pkeylen) {
return crypto_pk_private_decrypt(env,to,tolen,from,fromlen,padding,
warnOnFailure);
}
buf = tor_malloc(pkeylen);
outlen = crypto_pk_private_decrypt(env,buf,pkeylen,from,pkeylen,padding,
warnOnFailure);
if (outlen<0) {
log_fn(warnOnFailure?LOG_WARN:LOG_DEBUG, LD_CRYPTO,
"Error decrypting public-key data");
goto err;
}
if (outlen < CIPHER_KEY_LEN) {
log_fn(warnOnFailure?LOG_WARN:LOG_INFO, LD_CRYPTO,
"No room for a symmetric key");
goto err;
}
cipher = crypto_cipher_new(buf);
if (!cipher) {
goto err;
}
memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN);
outlen -= CIPHER_KEY_LEN;
tor_assert(tolen - outlen >= fromlen - pkeylen);
r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen);
if (r<0)
goto err;
memwipe(buf,0,pkeylen);
tor_free(buf);
crypto_cipher_free(cipher);
tor_assert(outlen + fromlen < INT_MAX);
return (int)(outlen + (fromlen-pkeylen));
err:
memwipe(buf,0,pkeylen);
tor_free(buf);
crypto_cipher_free(cipher);
return -1;
}
/** Given a private or public key <b>pk</b>, put a fingerprint of the
* public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
* space). Return 0 on success, -1 on failure.
*
* Fingerprints are computed as the SHA1 digest of the ASN.1 encoding
* of the public key, converted to hexadecimal, in upper case, with a
* space after every four digits.
*
* If <b>add_space</b> is false, omit the spaces.
*/
int
crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space)
{
char digest[DIGEST_LEN];
char hexdigest[HEX_DIGEST_LEN+1];
if (crypto_pk_get_digest(pk, digest)) {
return -1;
}
base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN);
if (add_space) {
crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest);
} else {
strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1);
}
return 0;
}
/** Given a private or public key <b>pk</b>, put a hashed fingerprint of
* the public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1
* bytes of space). Return 0 on success, -1 on failure.
*
* Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest
* of the ASN.1 encoding of the public key, converted to hexadecimal, in
* upper case.
*/
int
crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out)
{
char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN];
if (crypto_pk_get_digest(pk, digest)) {
return -1;
}
if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) {
return -1;
}
base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN);
return 0;
}
/** Copy <b>in</b> to the <b>outlen</b>-byte buffer <b>out</b>, adding spaces
* every four characters. */
void
crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in)
{
int n = 0;
char *end = out+outlen;
tor_assert(outlen < SIZE_T_CEILING);
while (*in && out<end) {
*out++ = *in++;
if (++n == 4 && *in && out<end) {
n = 0;
*out++ = ' ';
}
}
tor_assert(out<end);
*out = '\0';
}
/** Check a siglen-byte long signature at <b>sig</b> against
* <b>datalen</b> bytes of data at <b>data</b>, using the public key
* in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for
* SHA1(data). Else return -1.
*/
MOCK_IMPL(int,
crypto_pk_public_checksig_digest,(crypto_pk_t *env, const char *data,
size_t datalen, const char *sig,
size_t siglen))
{
char digest[DIGEST_LEN];
char *buf;
size_t buflen;
int r;
tor_assert(env);
tor_assert(data);
tor_assert(sig);
tor_assert(datalen < SIZE_T_CEILING);
tor_assert(siglen < SIZE_T_CEILING);
if (crypto_digest(digest,data,datalen)<0) {
log_warn(LD_BUG, "couldn't compute digest");
return -1;
}
buflen = crypto_pk_keysize(env);
buf = tor_malloc(buflen);
r = crypto_pk_public_checksig(env,buf,buflen,sig,siglen);
if (r != DIGEST_LEN) {
log_warn(LD_CRYPTO, "Invalid signature");
tor_free(buf);
return -1;
}
if (tor_memneq(buf, digest, DIGEST_LEN)) {
log_warn(LD_CRYPTO, "Signature mismatched with digest.");
tor_free(buf);
return -1;
}
tor_free(buf);
return 0;
}
/** Compute a SHA1 digest of <b>fromlen</b> bytes of data stored at
* <b>from</b>; sign the data with the private key in <b>env</b>, and
* store it in <b>to</b>. Return the number of bytes written on
* success, and -1 on failure.
*
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
* at least the length of the modulus of <b>env</b>.
*/
int
crypto_pk_private_sign_digest(crypto_pk_t *env, char *to, size_t tolen,
const char *from, size_t fromlen)
{
int r;
char digest[DIGEST_LEN];
if (crypto_digest(digest,from,fromlen)<0)
return -1;
r = crypto_pk_private_sign(env,to,tolen,digest,DIGEST_LEN);
memwipe(digest, 0, sizeof(digest));
return r;
}
/** Given a private or public key <b>pk</b>, put a SHA1 hash of the
* public key into <b>digest_out</b> (must have DIGEST_LEN bytes of space).
* Return 0 on success, -1 on failure.
*/
int
crypto_pk_get_digest(const crypto_pk_t *pk, char *digest_out)
{
char *buf;
size_t buflen;
int len;
int rv = -1;
buflen = crypto_pk_keysize(pk)*2;
buf = tor_malloc(buflen);
len = crypto_pk_asn1_encode(pk, buf, buflen);
if (len < 0)
goto done;
if (crypto_digest(digest_out, buf, len) < 0)
goto done;
rv = 0;
done:
tor_free(buf);
return rv;
}
/** Compute all digests of the DER encoding of <b>pk</b>, and store them
* in <b>digests_out</b>. Return 0 on success, -1 on failure. */
int
crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out)
{
char *buf;
size_t buflen;
int len;
int rv = -1;
buflen = crypto_pk_keysize(pk)*2;
buf = tor_malloc(buflen);
len = crypto_pk_asn1_encode(pk, buf, buflen);
if (len < 0)
goto done;
if (crypto_common_digests(digests_out, (char*)buf, len) < 0)
goto done;
rv = 0;
done:
tor_free(buf);
return rv;
}
static const char RSA_PUBLIC_TAG[] = "RSA PUBLIC KEY";
static const char RSA_PRIVATE_TAG[] = "RSA PRIVATE KEY";
/** PEM-encode the public key portion of <b>env</b> and write it to a
* newly allocated string. On success, set *<b>dest</b> to the new
* string, *<b>len</b> to the string's length, and return 0. On
* failure, return -1.
*/
int
crypto_pk_write_public_key_to_string(crypto_pk_t *env,
char **dest, size_t *len)
{
size_t buflen = crypto_pk_keysize(env) * 3;
char *buf = tor_malloc(buflen);
char *result = NULL;
size_t resultlen = 0;
int rv = -1;
int n = crypto_pk_asn1_encode(env, buf, buflen);
if (n < 0)
goto done;
resultlen = pem_encoded_size(n, RSA_PUBLIC_TAG);
result = tor_malloc(resultlen);
if (pem_encode(result, resultlen,
(const unsigned char *)buf, n, RSA_PUBLIC_TAG) < 0) {
goto done;
}
*dest = result;
*len = resultlen;
rv = 0;
done:
if (rv < 0 && result) {
memwipe(result, 0, resultlen);
tor_free(result);
}
memwipe(buf, 0, buflen);
tor_free(buf);
return rv;
}
/** PEM-encode the private key portion of <b>env</b> and write it to a
* newly allocated string. On success, set *<b>dest</b> to the new
* string, *<b>len</b> to the string's length, and return 0. On
* failure, return -1.
*/
int
crypto_pk_write_private_key_to_string(crypto_pk_t *env,
char **dest, size_t *len)
{
size_t buflen = crypto_pk_keysize(env) * 16;
char *buf = tor_malloc(buflen);
char *result = NULL;
size_t resultlen = 0;
int rv = -1;
int n = crypto_pk_asn1_encode_private(env, buf, buflen);
if (n < 0)
goto done;
resultlen = pem_encoded_size(n, RSA_PRIVATE_TAG);
result = tor_malloc(resultlen);
if (pem_encode(result, resultlen,
(const unsigned char *)buf, n, RSA_PRIVATE_TAG) < 0)
goto done;
*dest = result;
*len = resultlen;
rv = 0;
done:
if (rv < 0 && result) {
memwipe(result, 0, resultlen);
tor_free(result);
}
memwipe(buf, 0, buflen);
tor_free(buf);
return rv;
}
/** Read a PEM-encoded public key from the first <b>len</b> characters of
* <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
* failure.
*/
int
crypto_pk_read_public_key_from_string(crypto_pk_t *env,
const char *src, size_t len)
{
if (len == (size_t)-1)
len = strlen(src);
size_t buflen = len;
uint8_t *buf = tor_malloc(buflen);
int rv = -1;
int n = pem_decode(buf, buflen, src, len, RSA_PUBLIC_TAG);
if (n < 0)
goto done;
crypto_pk_t *pk = crypto_pk_asn1_decode((const char*)buf, n);
if (! pk)
goto done;
crypto_pk_assign_public(env, pk);
crypto_pk_free(pk);
rv = 0;
done:
memwipe(buf, 0, buflen);
tor_free(buf);
return rv;
}
/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
* into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
* the string is nul-terminated.
*/
int
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
const char *s, ssize_t len)
{
if (len == -1)
len = strlen(s);
size_t buflen = len;
uint8_t *buf = tor_malloc(buflen);
int rv = -1;
int n = pem_decode(buf, buflen, s, len, RSA_PRIVATE_TAG);
if (n < 0) {
goto done;
}
crypto_pk_t *pk = crypto_pk_asn1_decode_private((const char *)buf, n);
if (! pk)
goto done;
crypto_pk_assign_private(env, pk);
crypto_pk_free(pk);
rv = 0;
done:
memwipe(buf, 0, buflen);
tor_free(buf);
return rv;
}
/** Read a PEM-encoded private key from the file named by
* <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
*/
int
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
const char *keyfile)
{
struct stat st;
char *buf = read_file_to_str(keyfile, 0, &st);
if (!buf)
return -1;
int rv = crypto_pk_read_private_key_from_string(env, buf, st.st_size);
memwipe(buf, 0, st.st_size);
tor_free(buf);
return rv;
}
/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
* PEM-encoded. Return 0 on success, -1 on failure.
*/
int
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
const char *fname)
{
char *s = NULL;
size_t n = 0;
if (crypto_pk_write_private_key_to_string(env, &s, &n) < 0)
return -1;
int rv = write_bytes_to_file(fname, s, n, 0);
memwipe(s, 0, n);
tor_free(s);
return rv;
}
/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
* Base64 encoding of the DER representation of the private key as a NUL
* terminated string, and return it via <b>priv_out</b>. Return 0 on
* success, -1 on failure.
*
* It is the caller's responsibility to sanitize and free the resulting buffer.
*/
int
crypto_pk_base64_encode_private(const crypto_pk_t *pk, char **priv_out)
{
size_t buflen = crypto_pk_keysize(pk)*16;
char *buf = tor_malloc(buflen);
char *result = NULL;
size_t reslen = 0;
bool ok = false;
int n = crypto_pk_asn1_encode_private(pk, buf, buflen);
if (n < 0)
goto done;
reslen = base64_encode_size(n, 0)+1;
result = tor_malloc(reslen);
if (base64_encode(result, reslen, buf, n, 0) < 0)
goto done;
ok = true;
done:
memwipe(buf, 0, buflen);
tor_free(buf);
if (result && ! ok) {
memwipe(result, 0, reslen);
tor_free(result);
}
*priv_out = result;
return ok ? 0 : -1;
}
/** Given a string containing the Base64 encoded DER representation of the
* private key <b>str</b>, decode and return the result on success, or NULL
* on failure.
*/
crypto_pk_t *
crypto_pk_base64_decode_private(const char *str, size_t len)
{
crypto_pk_t *pk = NULL;
char *der = tor_malloc_zero(len + 1);
int der_len = base64_decode(der, len, str, len);
if (der_len <= 0) {
log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
goto out;
}
pk = crypto_pk_asn1_decode_private(der, der_len);
out:
memwipe(der, 0, len+1);
tor_free(der);
return pk;
}