tor/src/or/circuitstats.c

1661 lines
51 KiB
C
Raw Normal View History

/* Copyright (c) 2001 Matej Pfajfar.
* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
2013-01-16 07:54:56 +01:00
* Copyright (c) 2007-2013, The Tor Project, Inc. */
/* See LICENSE for licensing information */
#define CIRCUITSTATS_PRIVATE
#include "or.h"
#include "circuitbuild.h"
#include "circuitstats.h"
#include "config.h"
#include "confparse.h"
#include "control.h"
#include "main.h"
#include "networkstatus.h"
#include "statefile.h"
#undef log
#include <math.h>
static void cbt_control_event_buildtimeout_set(
const circuit_build_times_t *cbt,
buildtimeout_set_event_t type);
#define CBT_BIN_TO_MS(bin) ((bin)*CBT_BIN_WIDTH + (CBT_BIN_WIDTH/2))
/** Global list of circuit build times */
// XXXX: Add this as a member for entry_guard_t instead of global?
// Then we could do per-guard statistics, as guards are likely to
// vary in their own latency. The downside of this is that guards
// can change frequently, so we'd be building a lot more circuits
// most likely.
static circuit_build_times_t circ_times;
#ifdef TOR_UNIT_TESTS
/** If set, we're running the unit tests: we should avoid clobbering
* our state file or accessing get_options() or get_or_state() */
static int unit_tests = 0;
#else
#define unit_tests 0
#endif
2013-08-21 18:17:20 +02:00
/** Return a pointer to the data structure describing our current circuit
* build time history and computations. */
const circuit_build_times_t *
get_circuit_build_times(void)
{
return &circ_times;
}
2013-08-21 18:17:20 +02:00
/** As get_circuit_build_times, but return a mutable pointer. */
circuit_build_times_t *
get_circuit_build_times_mutable(void)
{
return &circ_times;
}
2013-08-21 18:17:20 +02:00
/** Return the time to wait before actually closing an under-construction, in
* milliseconds. */
double
get_circuit_build_close_time_ms(void)
{
return circ_times.close_ms;
}
2013-08-21 18:17:20 +02:00
/** Return the time to wait before giving up on an under-construction circuit,
* in milliseconds. */
double
get_circuit_build_timeout_ms(void)
{
return circ_times.timeout_ms;
}
/**
* This function decides if CBT learning should be disabled. It returns
* true if one or more of the following four conditions are met:
*
* 1. If the cbtdisabled consensus parameter is set.
* 2. If the torrc option LearnCircuitBuildTimeout is false.
* 3. If we are a directory authority
* 4. If we fail to write circuit build time history to our state file.
*/
int
circuit_build_times_disabled(void)
{
if (unit_tests) {
return 0;
} else {
int consensus_disabled = networkstatus_get_param(NULL, "cbtdisabled",
0, 0, 1);
int config_disabled = !get_options()->LearnCircuitBuildTimeout;
int dirauth_disabled = get_options()->AuthoritativeDir;
int state_disabled = did_last_state_file_write_fail() ? 1 : 0;
if (consensus_disabled || config_disabled || dirauth_disabled ||
state_disabled) {
#if 0
log_debug(LD_CIRC,
"CircuitBuildTime learning is disabled. "
"Consensus=%d, Config=%d, AuthDir=%d, StateFile=%d",
consensus_disabled, config_disabled, dirauth_disabled,
state_disabled);
#endif
return 1;
} else {
#if 0
log_debug(LD_CIRC,
"CircuitBuildTime learning is not disabled. "
"Consensus=%d, Config=%d, AuthDir=%d, StateFile=%d",
consensus_disabled, config_disabled, dirauth_disabled,
state_disabled);
#endif
return 0;
}
}
}
/**
* Retrieve and bounds-check the cbtmaxtimeouts consensus paramter.
*
* Effect: When this many timeouts happen in the last 'cbtrecentcount'
* circuit attempts, the client should discard all of its history and
* begin learning a fresh timeout value.
*/
static int32_t
circuit_build_times_max_timeouts(void)
{
int32_t cbt_maxtimeouts;
cbt_maxtimeouts = networkstatus_get_param(NULL, "cbtmaxtimeouts",
CBT_DEFAULT_MAX_RECENT_TIMEOUT_COUNT,
CBT_MIN_MAX_RECENT_TIMEOUT_COUNT,
CBT_MAX_MAX_RECENT_TIMEOUT_COUNT);
if (!(get_options()->LearnCircuitBuildTimeout)) {
log_debug(LD_BUG,
"circuit_build_times_max_timeouts() called, cbtmaxtimeouts is"
" %d",
cbt_maxtimeouts);
}
return cbt_maxtimeouts;
}
/**
* Retrieve and bounds-check the cbtnummodes consensus paramter.
*
* Effect: This value governs how many modes to use in the weighted
* average calculation of Pareto parameter Xm. A value of 3 introduces
* some bias (2-5% of CDF) under ideal conditions, but allows for better
* performance in the event that a client chooses guard nodes of radically
* different performance characteristics.
*/
static int32_t
circuit_build_times_default_num_xm_modes(void)
{
int32_t num = networkstatus_get_param(NULL, "cbtnummodes",
CBT_DEFAULT_NUM_XM_MODES,
CBT_MIN_NUM_XM_MODES,
CBT_MAX_NUM_XM_MODES);
if (!(get_options()->LearnCircuitBuildTimeout)) {
log_debug(LD_BUG,
"circuit_build_times_default_num_xm_modes() called, cbtnummodes"
" is %d",
num);
}
return num;
}
/**
* Retrieve and bounds-check the cbtmincircs consensus paramter.
*
* Effect: This is the minimum number of circuits to build before
* computing a timeout.
*/
static int32_t
circuit_build_times_min_circs_to_observe(void)
{
int32_t num = networkstatus_get_param(NULL, "cbtmincircs",
CBT_DEFAULT_MIN_CIRCUITS_TO_OBSERVE,
CBT_MIN_MIN_CIRCUITS_TO_OBSERVE,
CBT_MAX_MIN_CIRCUITS_TO_OBSERVE);
if (!(get_options()->LearnCircuitBuildTimeout)) {
log_debug(LD_BUG,
"circuit_build_times_min_circs_to_observe() called, cbtmincircs"
" is %d",
num);
}
return num;
}
/** Return true iff <b>cbt</b> has recorded enough build times that we
* want to start acting on the timeout it implies. */
int
circuit_build_times_enough_to_compute(const circuit_build_times_t *cbt)
{
return cbt->total_build_times >= circuit_build_times_min_circs_to_observe();
}
/**
* Retrieve and bounds-check the cbtquantile consensus paramter.
*
* Effect: This is the position on the quantile curve to use to set the
* timeout value. It is a percent (10-99).
*/
double
circuit_build_times_quantile_cutoff(void)
{
int32_t num = networkstatus_get_param(NULL, "cbtquantile",
CBT_DEFAULT_QUANTILE_CUTOFF,
CBT_MIN_QUANTILE_CUTOFF,
CBT_MAX_QUANTILE_CUTOFF);
if (!(get_options()->LearnCircuitBuildTimeout)) {
log_debug(LD_BUG,
"circuit_build_times_quantile_cutoff() called, cbtquantile"
" is %d",
num);
}
return num/100.0;
}
/**
* Retrieve and bounds-check the cbtclosequantile consensus paramter.
*
* Effect: This is the position on the quantile curve to use to set the
* timeout value to use to actually close circuits. It is a percent
* (0-99).
*/
static double
circuit_build_times_close_quantile(void)
{
int32_t param;
/* Cast is safe - circuit_build_times_quantile_cutoff() is capped */
int32_t min = (int)tor_lround(100*circuit_build_times_quantile_cutoff());
param = networkstatus_get_param(NULL, "cbtclosequantile",
CBT_DEFAULT_CLOSE_QUANTILE,
CBT_MIN_CLOSE_QUANTILE,
CBT_MAX_CLOSE_QUANTILE);
if (!(get_options()->LearnCircuitBuildTimeout)) {
log_debug(LD_BUG,
"circuit_build_times_close_quantile() called, cbtclosequantile"
" is %d", param);
}
if (param < min) {
log_warn(LD_DIR, "Consensus parameter cbtclosequantile is "
"too small, raising to %d", min);
param = min;
}
return param / 100.0;
}
/**
* Retrieve and bounds-check the cbttestfreq consensus paramter.
*
* Effect: Describes how often in seconds to build a test circuit to
* gather timeout values. Only applies if less than 'cbtmincircs'
* have been recorded.
*/
static int32_t
circuit_build_times_test_frequency(void)
{
int32_t num = networkstatus_get_param(NULL, "cbttestfreq",
CBT_DEFAULT_TEST_FREQUENCY,
CBT_MIN_TEST_FREQUENCY,
CBT_MAX_TEST_FREQUENCY);
if (!(get_options()->LearnCircuitBuildTimeout)) {
log_debug(LD_BUG,
"circuit_build_times_test_frequency() called, cbttestfreq is %d",
num);
}
return num;
}
/**
* Retrieve and bounds-check the cbtmintimeout consensus parameter.
*
* Effect: This is the minimum allowed timeout value in milliseconds.
* The minimum is to prevent rounding to 0 (we only check once
* per second).
*/
static int32_t
circuit_build_times_min_timeout(void)
{
int32_t num = networkstatus_get_param(NULL, "cbtmintimeout",
CBT_DEFAULT_TIMEOUT_MIN_VALUE,
CBT_MIN_TIMEOUT_MIN_VALUE,
CBT_MAX_TIMEOUT_MIN_VALUE);
if (!(get_options()->LearnCircuitBuildTimeout)) {
log_debug(LD_BUG,
"circuit_build_times_min_timeout() called, cbtmintimeout is %d",
num);
}
return num;
}
/**
* Retrieve and bounds-check the cbtinitialtimeout consensus paramter.
*
* Effect: This is the timeout value to use before computing a timeout,
* in milliseconds.
*/
int32_t
circuit_build_times_initial_timeout(void)
{
int32_t min = circuit_build_times_min_timeout();
int32_t param = networkstatus_get_param(NULL, "cbtinitialtimeout",
CBT_DEFAULT_TIMEOUT_INITIAL_VALUE,
CBT_MIN_TIMEOUT_INITIAL_VALUE,
CBT_MAX_TIMEOUT_INITIAL_VALUE);
if (!(get_options()->LearnCircuitBuildTimeout)) {
log_debug(LD_BUG,
"circuit_build_times_initial_timeout() called, "
"cbtinitialtimeout is %d",
param);
}
if (param < min) {
log_warn(LD_DIR, "Consensus parameter cbtinitialtimeout is too small, "
"raising to %d", min);
param = min;
}
return param;
}
/**
* Retrieve and bounds-check the cbtrecentcount consensus paramter.
*
* Effect: This is the number of circuit build times to keep track of
* for deciding if we hit cbtmaxtimeouts and need to reset our state
* and learn a new timeout.
*/
static int32_t
circuit_build_times_recent_circuit_count(networkstatus_t *ns)
{
int32_t num;
num = networkstatus_get_param(ns, "cbtrecentcount",
CBT_DEFAULT_RECENT_CIRCUITS,
CBT_MIN_RECENT_CIRCUITS,
CBT_MAX_RECENT_CIRCUITS);
if (!(get_options()->LearnCircuitBuildTimeout)) {
log_debug(LD_BUG,
"circuit_build_times_recent_circuit_count() called, "
"cbtrecentcount is %d",
num);
}
return num;
}
/**
* This function is called when we get a consensus update.
*
* It checks to see if we have changed any consensus parameters
* that require reallocation or discard of previous stats.
*/
void
circuit_build_times_new_consensus_params(circuit_build_times_t *cbt,
networkstatus_t *ns)
{
int32_t num;
/*
* First check if we're doing adaptive timeouts at all; nothing to
* update if we aren't.
*/
if (!circuit_build_times_disabled()) {
num = circuit_build_times_recent_circuit_count(ns);
if (num > 0) {
if (num != cbt->liveness.num_recent_circs) {
int8_t *recent_circs;
log_notice(LD_CIRC, "The Tor Directory Consensus has changed how many "
"circuits we must track to detect network failures from %d "
"to %d.", cbt->liveness.num_recent_circs, num);
tor_assert(cbt->liveness.timeouts_after_firsthop ||
cbt->liveness.num_recent_circs == 0);
/*
* Technically this is a circular array that we are reallocating
* and memcopying. However, since it only consists of either 1s
* or 0s, and is only used in a statistical test to determine when
* we should discard our history after a sufficient number of 1's
* have been reached, it is fine if order is not preserved or
* elements are lost.
*
* cbtrecentcount should only be changing in cases of severe network
* distress anyway, so memory correctness here is paramount over
* doing acrobatics to preserve the array.
*/
recent_circs = tor_calloc(sizeof(int8_t), num);
if (cbt->liveness.timeouts_after_firsthop &&
cbt->liveness.num_recent_circs > 0) {
memcpy(recent_circs, cbt->liveness.timeouts_after_firsthop,
sizeof(int8_t)*MIN(num, cbt->liveness.num_recent_circs));
}
// Adjust the index if it needs it.
if (num < cbt->liveness.num_recent_circs) {
cbt->liveness.after_firsthop_idx = MIN(num-1,
cbt->liveness.after_firsthop_idx);
}
tor_free(cbt->liveness.timeouts_after_firsthop);
cbt->liveness.timeouts_after_firsthop = recent_circs;
cbt->liveness.num_recent_circs = num;
}
/* else no change, nothing to do */
} else { /* num == 0 */
/*
* Weird. This probably shouldn't happen, so log a warning, but try
* to do something sensible anyway.
*/
log_warn(LD_CIRC,
"The cbtrecentcircs consensus parameter came back zero! "
"This disables adaptive timeouts since we can't keep track of "
"any recent circuits.");
circuit_build_times_free_timeouts(cbt);
}
} else {
/*
* Adaptive timeouts are disabled; this might be because of the
* LearnCircuitBuildTimes config parameter, and hence permanent, or
* the cbtdisabled consensus parameter, so it may be a new condition.
* Treat it like getting num == 0 above and free the circuit history
* if we have any.
*/
circuit_build_times_free_timeouts(cbt);
}
}
/**
* Return the initial default or configured timeout in milliseconds
*/
static double
circuit_build_times_get_initial_timeout(void)
{
double timeout;
/*
* Check if we have LearnCircuitBuildTimeout, and if we don't,
* always use CircuitBuildTimeout, no questions asked.
*/
if (!unit_tests && get_options()->CircuitBuildTimeout) {
timeout = get_options()->CircuitBuildTimeout*1000;
if (get_options()->LearnCircuitBuildTimeout &&
timeout < circuit_build_times_min_timeout()) {
log_warn(LD_CIRC, "Config CircuitBuildTimeout too low. Setting to %ds",
circuit_build_times_min_timeout()/1000);
timeout = circuit_build_times_min_timeout();
}
} else {
timeout = circuit_build_times_initial_timeout();
}
return timeout;
}
/**
* Reset the build time state.
*
* Leave estimated parameters, timeout and network liveness intact
* for future use.
*/
STATIC void
circuit_build_times_reset(circuit_build_times_t *cbt)
{
memset(cbt->circuit_build_times, 0, sizeof(cbt->circuit_build_times));
cbt->total_build_times = 0;
cbt->build_times_idx = 0;
cbt->have_computed_timeout = 0;
}
/**
* Initialize the buildtimes structure for first use.
*
* Sets the initial timeout values based on either the config setting,
* the consensus param, or the default (CBT_DEFAULT_TIMEOUT_INITIAL_VALUE).
*/
void
circuit_build_times_init(circuit_build_times_t *cbt)
{
memset(cbt, 0, sizeof(*cbt));
/*
* Check if we really are using adaptive timeouts, and don't keep
* track of this stuff if not.
*/
if (!circuit_build_times_disabled()) {
cbt->liveness.num_recent_circs =
circuit_build_times_recent_circuit_count(NULL);
cbt->liveness.timeouts_after_firsthop =
tor_calloc(sizeof(int8_t), cbt->liveness.num_recent_circs);
} else {
cbt->liveness.num_recent_circs = 0;
cbt->liveness.timeouts_after_firsthop = NULL;
}
cbt->close_ms = cbt->timeout_ms = circuit_build_times_get_initial_timeout();
cbt_control_event_buildtimeout_set(cbt, BUILDTIMEOUT_SET_EVENT_RESET);
}
/**
* Free the saved timeouts, if the cbtdisabled consensus parameter got turned
* on or something.
*/
void
circuit_build_times_free_timeouts(circuit_build_times_t *cbt)
{
if (!cbt) return;
if (cbt->liveness.timeouts_after_firsthop) {
tor_free(cbt->liveness.timeouts_after_firsthop);
}
cbt->liveness.num_recent_circs = 0;
}
#if 0
/**
* Rewind our build time history by n positions.
*/
static void
circuit_build_times_rewind_history(circuit_build_times_t *cbt, int n)
{
int i = 0;
cbt->build_times_idx -= n;
cbt->build_times_idx %= CBT_NCIRCUITS_TO_OBSERVE;
for (i = 0; i < n; i++) {
cbt->circuit_build_times[(i+cbt->build_times_idx)
%CBT_NCIRCUITS_TO_OBSERVE]=0;
}
if (cbt->total_build_times > n) {
cbt->total_build_times -= n;
} else {
cbt->total_build_times = 0;
}
log_info(LD_CIRC,
"Rewound history by %d places. Current index: %d. "
"Total: %d", n, cbt->build_times_idx, cbt->total_build_times);
}
#endif
/**
* Add a new build time value <b>time</b> to the set of build times. Time
* units are milliseconds.
*
* circuit_build_times <b>cbt</b> is a circular array, so loop around when
* array is full.
*/
int
circuit_build_times_add_time(circuit_build_times_t *cbt, build_time_t time)
{
if (time <= 0 || time > CBT_BUILD_TIME_MAX) {
log_warn(LD_BUG, "Circuit build time is too large (%u)."
"This is probably a bug.", time);
tor_fragile_assert();
return -1;
}
log_debug(LD_CIRC, "Adding circuit build time %u", time);
cbt->circuit_build_times[cbt->build_times_idx] = time;
cbt->build_times_idx = (cbt->build_times_idx + 1) % CBT_NCIRCUITS_TO_OBSERVE;
if (cbt->total_build_times < CBT_NCIRCUITS_TO_OBSERVE)
cbt->total_build_times++;
if ((cbt->total_build_times % CBT_SAVE_STATE_EVERY) == 0) {
/* Save state every n circuit builds */
if (!unit_tests && !get_options()->AvoidDiskWrites)
or_state_mark_dirty(get_or_state(), 0);
}
return 0;
}
/**
* Return maximum circuit build time
*/
static build_time_t
circuit_build_times_max(const circuit_build_times_t *cbt)
{
int i = 0;
build_time_t max_build_time = 0;
for (i = 0; i < CBT_NCIRCUITS_TO_OBSERVE; i++) {
if (cbt->circuit_build_times[i] > max_build_time
&& cbt->circuit_build_times[i] != CBT_BUILD_ABANDONED)
max_build_time = cbt->circuit_build_times[i];
}
return max_build_time;
}
#if 0
/** Return minimum circuit build time */
build_time_t
circuit_build_times_min(circuit_build_times_t *cbt)
{
int i = 0;
build_time_t min_build_time = CBT_BUILD_TIME_MAX;
for (i = 0; i < CBT_NCIRCUITS_TO_OBSERVE; i++) {
if (cbt->circuit_build_times[i] && /* 0 <-> uninitialized */
cbt->circuit_build_times[i] < min_build_time)
min_build_time = cbt->circuit_build_times[i];
}
if (min_build_time == CBT_BUILD_TIME_MAX) {
log_warn(LD_CIRC, "No build times less than CBT_BUILD_TIME_MAX!");
}
return min_build_time;
}
#endif
/**
* Calculate and return a histogram for the set of build times.
*
* Returns an allocated array of histrogram bins representing
* the frequency of index*CBT_BIN_WIDTH millisecond
* build times. Also outputs the number of bins in nbins.
*
* The return value must be freed by the caller.
*/
static uint32_t *
circuit_build_times_create_histogram(const circuit_build_times_t *cbt,
build_time_t *nbins)
{
uint32_t *histogram;
build_time_t max_build_time = circuit_build_times_max(cbt);
int i, c;
*nbins = 1 + (max_build_time / CBT_BIN_WIDTH);
histogram = tor_calloc(*nbins, sizeof(build_time_t));
// calculate histogram
for (i = 0; i < CBT_NCIRCUITS_TO_OBSERVE; i++) {
if (cbt->circuit_build_times[i] == 0
|| cbt->circuit_build_times[i] == CBT_BUILD_ABANDONED)
continue; /* 0 <-> uninitialized */
c = (cbt->circuit_build_times[i] / CBT_BIN_WIDTH);
histogram[c]++;
}
return histogram;
}
/**
* Return the Pareto start-of-curve parameter Xm.
*
* Because we are not a true Pareto curve, we compute this as the
* weighted average of the N most frequent build time bins. N is either
* 1 if we don't have enough circuit build time data collected, or
* determined by the consensus parameter cbtnummodes (default 3).
*/
static build_time_t
circuit_build_times_get_xm(circuit_build_times_t *cbt)
{
build_time_t i, nbins;
build_time_t *nth_max_bin;
int32_t bin_counts=0;
build_time_t ret = 0;
uint32_t *histogram = circuit_build_times_create_histogram(cbt, &nbins);
int n=0;
int num_modes = circuit_build_times_default_num_xm_modes();
tor_assert(nbins > 0);
tor_assert(num_modes > 0);
// Only use one mode if < 1000 buildtimes. Not enough data
// for multiple.
if (cbt->total_build_times < CBT_NCIRCUITS_TO_OBSERVE)
num_modes = 1;
nth_max_bin = (build_time_t*)tor_calloc(num_modes, sizeof(build_time_t));
/* Determine the N most common build times */
for (i = 0; i < nbins; i++) {
if (histogram[i] >= histogram[nth_max_bin[0]]) {
nth_max_bin[0] = i;
}
for (n = 1; n < num_modes; n++) {
if (histogram[i] >= histogram[nth_max_bin[n]] &&
(!histogram[nth_max_bin[n-1]]
|| histogram[i] < histogram[nth_max_bin[n-1]])) {
nth_max_bin[n] = i;
}
}
}
for (n = 0; n < num_modes; n++) {
bin_counts += histogram[nth_max_bin[n]];
ret += CBT_BIN_TO_MS(nth_max_bin[n])*histogram[nth_max_bin[n]];
log_info(LD_CIRC, "Xm mode #%d: %u %u", n, CBT_BIN_TO_MS(nth_max_bin[n]),
histogram[nth_max_bin[n]]);
}
/* The following assert is safe, because we don't get called when we
* haven't observed at least CBT_MIN_MIN_CIRCUITS_TO_OBSERVE circuits. */
tor_assert(bin_counts > 0);
ret /= bin_counts;
tor_free(histogram);
tor_free(nth_max_bin);
return ret;
}
/**
* Output a histogram of current circuit build times to
* the or_state_t state structure.
*/
void
circuit_build_times_update_state(const circuit_build_times_t *cbt,
or_state_t *state)
{
uint32_t *histogram;
build_time_t i = 0;
build_time_t nbins = 0;
config_line_t **next, *line;
histogram = circuit_build_times_create_histogram(cbt, &nbins);
// write to state
config_free_lines(state->BuildtimeHistogram);
next = &state->BuildtimeHistogram;
*next = NULL;
state->TotalBuildTimes = cbt->total_build_times;
state->CircuitBuildAbandonedCount = 0;
for (i = 0; i < CBT_NCIRCUITS_TO_OBSERVE; i++) {
if (cbt->circuit_build_times[i] == CBT_BUILD_ABANDONED)
state->CircuitBuildAbandonedCount++;
}
for (i = 0; i < nbins; i++) {
// compress the histogram by skipping the blanks
if (histogram[i] == 0) continue;
*next = line = tor_malloc_zero(sizeof(config_line_t));
line->key = tor_strdup("CircuitBuildTimeBin");
tor_asprintf(&line->value, "%d %d",
CBT_BIN_TO_MS(i), histogram[i]);
next = &(line->next);
}
if (!unit_tests) {
if (!get_options()->AvoidDiskWrites)
or_state_mark_dirty(get_or_state(), 0);
}
tor_free(histogram);
}
/**
* Shuffle the build times array.
*
* Adapted from http://en.wikipedia.org/wiki/Fisher-Yates_shuffle
*/
static void
circuit_build_times_shuffle_and_store_array(circuit_build_times_t *cbt,
build_time_t *raw_times,
uint32_t num_times)
{
uint32_t n = num_times;
if (num_times > CBT_NCIRCUITS_TO_OBSERVE) {
log_notice(LD_CIRC, "The number of circuit times that this Tor version "
"uses to calculate build times is less than the number stored "
"in your state file. Decreasing the circuit time history from "
"%lu to %d.", (unsigned long)num_times,
CBT_NCIRCUITS_TO_OBSERVE);
}
if (n > INT_MAX-1) {
log_warn(LD_CIRC, "For some insane reasons, you had %lu circuit build "
"observations in your state file. That's far too many; probably "
"there's a bug here.", (unsigned long)n);
n = INT_MAX-1;
}
/* This code can only be run on a compact array */
while (n-- > 1) {
int k = crypto_rand_int(n + 1); /* 0 <= k <= n. */
build_time_t tmp = raw_times[k];
raw_times[k] = raw_times[n];
raw_times[n] = tmp;
}
/* Since the times are now shuffled, take a random CBT_NCIRCUITS_TO_OBSERVE
* subset (ie the first CBT_NCIRCUITS_TO_OBSERVE values) */
for (n = 0; n < MIN(num_times, CBT_NCIRCUITS_TO_OBSERVE); n++) {
circuit_build_times_add_time(cbt, raw_times[n]);
}
}
/**
* Filter old synthetic timeouts that were created before the
* new right-censored Pareto calculation was deployed.
*
* Once all clients before 0.2.1.13-alpha are gone, this code
* will be unused.
*/
static int
circuit_build_times_filter_timeouts(circuit_build_times_t *cbt)
{
int num_filtered=0, i=0;
double timeout_rate = 0;
build_time_t max_timeout = 0;
timeout_rate = circuit_build_times_timeout_rate(cbt);
max_timeout = (build_time_t)cbt->close_ms;
for (i = 0; i < CBT_NCIRCUITS_TO_OBSERVE; i++) {
if (cbt->circuit_build_times[i] > max_timeout) {
build_time_t replaced = cbt->circuit_build_times[i];
num_filtered++;
cbt->circuit_build_times[i] = CBT_BUILD_ABANDONED;
log_debug(LD_CIRC, "Replaced timeout %d with %d", replaced,
cbt->circuit_build_times[i]);
}
}
log_info(LD_CIRC,
"We had %d timeouts out of %d build times, "
"and filtered %d above the max of %u",
(int)(cbt->total_build_times*timeout_rate),
cbt->total_build_times, num_filtered, max_timeout);
return num_filtered;
}
/**
* Load histogram from <b>state</b>, shuffling the resulting array
* after we do so. Use this result to estimate parameters and
* calculate the timeout.
*
* Return -1 on error.
*/
int
circuit_build_times_parse_state(circuit_build_times_t *cbt,
or_state_t *state)
{
int tot_values = 0;
uint32_t loaded_cnt = 0, N = 0;
config_line_t *line;
unsigned int i;
build_time_t *loaded_times;
int err = 0;
circuit_build_times_init(cbt);
if (circuit_build_times_disabled()) {
return 0;
}
/* build_time_t 0 means uninitialized */
loaded_times = tor_calloc(sizeof(build_time_t), state->TotalBuildTimes);
for (line = state->BuildtimeHistogram; line; line = line->next) {
smartlist_t *args = smartlist_new();
smartlist_split_string(args, line->value, " ",
SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK, 0);
if (smartlist_len(args) < 2) {
log_warn(LD_GENERAL, "Unable to parse circuit build times: "
"Too few arguments to CircuitBuildTime");
err = 1;
SMARTLIST_FOREACH(args, char*, cp, tor_free(cp));
smartlist_free(args);
break;
} else {
const char *ms_str = smartlist_get(args,0);
const char *count_str = smartlist_get(args,1);
uint32_t count, k;
build_time_t ms;
int ok;
ms = (build_time_t)tor_parse_ulong(ms_str, 0, 0,
CBT_BUILD_TIME_MAX, &ok, NULL);
if (!ok) {
log_warn(LD_GENERAL, "Unable to parse circuit build times: "
"Unparsable bin number");
err = 1;
SMARTLIST_FOREACH(args, char*, cp, tor_free(cp));
smartlist_free(args);
break;
}
count = (uint32_t)tor_parse_ulong(count_str, 0, 0,
UINT32_MAX, &ok, NULL);
if (!ok) {
log_warn(LD_GENERAL, "Unable to parse circuit build times: "
"Unparsable bin count");
err = 1;
SMARTLIST_FOREACH(args, char*, cp, tor_free(cp));
smartlist_free(args);
break;
}
if (loaded_cnt+count+state->CircuitBuildAbandonedCount
> state->TotalBuildTimes) {
log_warn(LD_CIRC,
"Too many build times in state file. "
"Stopping short before %d",
loaded_cnt+count);
SMARTLIST_FOREACH(args, char*, cp, tor_free(cp));
smartlist_free(args);
break;
}
for (k = 0; k < count; k++) {
loaded_times[loaded_cnt++] = ms;
}
N++;
SMARTLIST_FOREACH(args, char*, cp, tor_free(cp));
smartlist_free(args);
}
}
log_info(LD_CIRC,
"Adding %d timeouts.", state->CircuitBuildAbandonedCount);
for (i=0; i < state->CircuitBuildAbandonedCount; i++) {
loaded_times[loaded_cnt++] = CBT_BUILD_ABANDONED;
}
if (loaded_cnt != state->TotalBuildTimes) {
log_warn(LD_CIRC,
"Corrupt state file? Build times count mismatch. "
"Read %d times, but file says %d", loaded_cnt,
state->TotalBuildTimes);
err = 1;
circuit_build_times_reset(cbt);
goto done;
}
circuit_build_times_shuffle_and_store_array(cbt, loaded_times, loaded_cnt);
/* Verify that we didn't overwrite any indexes */
for (i=0; i < CBT_NCIRCUITS_TO_OBSERVE; i++) {
if (!cbt->circuit_build_times[i])
break;
tot_values++;
}
log_info(LD_CIRC,
"Loaded %d/%d values from %d lines in circuit time histogram",
tot_values, cbt->total_build_times, N);
if (cbt->total_build_times != tot_values
|| cbt->total_build_times > CBT_NCIRCUITS_TO_OBSERVE) {
log_warn(LD_CIRC,
"Corrupt state file? Shuffled build times mismatch. "
"Read %d times, but file says %d", tot_values,
state->TotalBuildTimes);
err = 1;
circuit_build_times_reset(cbt);
goto done;
}
circuit_build_times_set_timeout(cbt);
if (!state->CircuitBuildAbandonedCount && cbt->total_build_times) {
circuit_build_times_filter_timeouts(cbt);
}
done:
tor_free(loaded_times);
return err ? -1 : 0;
}
/**
* Estimates the Xm and Alpha parameters using
* http://en.wikipedia.org/wiki/Pareto_distribution#Parameter_estimation
*
* The notable difference is that we use mode instead of min to estimate Xm.
* This is because our distribution is frechet-like. We claim this is
* an acceptable approximation because we are only concerned with the
* accuracy of the CDF of the tail.
*/
STATIC int
circuit_build_times_update_alpha(circuit_build_times_t *cbt)
{
build_time_t *x=cbt->circuit_build_times;
double a = 0;
int n=0,i=0,abandoned_count=0;
build_time_t max_time=0;
/* http://en.wikipedia.org/wiki/Pareto_distribution#Parameter_estimation */
/* We sort of cheat here and make our samples slightly more pareto-like
* and less frechet-like. */
cbt->Xm = circuit_build_times_get_xm(cbt);
tor_assert(cbt->Xm > 0);
for (i=0; i< CBT_NCIRCUITS_TO_OBSERVE; i++) {
if (!x[i]) {
continue;
}
if (x[i] < cbt->Xm) {
a += tor_mathlog(cbt->Xm);
} else if (x[i] == CBT_BUILD_ABANDONED) {
abandoned_count++;
} else {
a += tor_mathlog(x[i]);
if (x[i] > max_time)
max_time = x[i];
}
n++;
}
/*
* We are erring and asserting here because this can only happen
* in codepaths other than startup. The startup state parsing code
* performs this same check, and resets state if it hits it. If we
* hit it at runtime, something serious has gone wrong.
*/
if (n!=cbt->total_build_times) {
log_err(LD_CIRC, "Discrepancy in build times count: %d vs %d", n,
cbt->total_build_times);
}
tor_assert(n==cbt->total_build_times);
if (max_time <= 0) {
/* This can happen if Xm is actually the *maximum* value in the set.
* It can also happen if we've abandoned every single circuit somehow.
* In either case, tell the caller not to compute a new build timeout. */
log_warn(LD_BUG,
"Could not determine largest build time (%d). "
"Xm is %dms and we've abandoned %d out of %d circuits.", max_time,
cbt->Xm, abandoned_count, n);
return 0;
}
a += abandoned_count*tor_mathlog(max_time);
a -= n*tor_mathlog(cbt->Xm);
// Estimator comes from Eq #4 in:
// "Bayesian estimation based on trimmed samples from Pareto populations"
// by Arturo J. Fernández. We are right-censored only.
a = (n-abandoned_count)/a;
cbt->alpha = a;
return 1;
}
/**
* This is the Pareto Quantile Function. It calculates the point x
* in the distribution such that F(x) = quantile (ie quantile*100%
* of the mass of the density function is below x on the curve).
*
* We use it to calculate the timeout and also to generate synthetic
* values of time for circuits that timeout before completion.
*
* See http://en.wikipedia.org/wiki/Quantile_function,
* http://en.wikipedia.org/wiki/Inverse_transform_sampling and
* http://en.wikipedia.org/wiki/Pareto_distribution#Generating_a_
* random_sample_from_Pareto_distribution
* That's right. I'll cite wikipedia all day long.
*
* Return value is in milliseconds.
*/
STATIC double
circuit_build_times_calculate_timeout(circuit_build_times_t *cbt,
double quantile)
{
double ret;
tor_assert(quantile >= 0);
tor_assert(1.0-quantile > 0);
tor_assert(cbt->Xm > 0);
ret = cbt->Xm/pow(1.0-quantile,1.0/cbt->alpha);
if (ret > INT32_MAX) {
ret = INT32_MAX;
}
tor_assert(ret > 0);
return ret;
}
#ifdef TOR_UNIT_TESTS
/** Pareto CDF */
double
circuit_build_times_cdf(circuit_build_times_t *cbt, double x)
{
double ret;
tor_assert(cbt->Xm > 0);
ret = 1.0-pow(cbt->Xm/x,cbt->alpha);
tor_assert(0 <= ret && ret <= 1.0);
return ret;
}
#endif
#ifdef TOR_UNIT_TESTS
/**
* Generate a synthetic time using our distribution parameters.
*
* The return value will be within the [q_lo, q_hi) quantile points
* on the CDF.
*/
build_time_t
circuit_build_times_generate_sample(circuit_build_times_t *cbt,
double q_lo, double q_hi)
{
double randval = crypto_rand_double();
build_time_t ret;
double u;
/* Generate between [q_lo, q_hi) */
/*XXXX This is what nextafter is supposed to be for; we should use it on the
* platforms that support it. */
q_hi -= 1.0/(INT32_MAX);
tor_assert(q_lo >= 0);
tor_assert(q_hi < 1);
tor_assert(q_lo < q_hi);
u = q_lo + (q_hi-q_lo)*randval;
tor_assert(0 <= u && u < 1.0);
/* circuit_build_times_calculate_timeout returns <= INT32_MAX */
ret = (build_time_t)
tor_lround(circuit_build_times_calculate_timeout(cbt, u));
tor_assert(ret > 0);
return ret;
}
#endif
#ifdef TOR_UNIT_TESTS
/**
* Estimate an initial alpha parameter by solving the quantile
* function with a quantile point and a specific timeout value.
*/
void
circuit_build_times_initial_alpha(circuit_build_times_t *cbt,
double quantile, double timeout_ms)
{
// Q(u) = Xm/((1-u)^(1/a))
// Q(0.8) = Xm/((1-0.8))^(1/a)) = CircBuildTimeout
// CircBuildTimeout = Xm/((1-0.8))^(1/a))
// CircBuildTimeout = Xm*((1-0.8))^(-1/a))
// ln(CircBuildTimeout) = ln(Xm)+ln(((1-0.8)))*(-1/a)
// -ln(1-0.8)/(ln(CircBuildTimeout)-ln(Xm))=a
tor_assert(quantile >= 0);
tor_assert(cbt->Xm > 0);
cbt->alpha = tor_mathlog(1.0-quantile)/
(tor_mathlog(cbt->Xm)-tor_mathlog(timeout_ms));
tor_assert(cbt->alpha > 0);
}
#endif
/**
* Returns true if we need circuits to be built
*/
int
circuit_build_times_needs_circuits(const circuit_build_times_t *cbt)
{
/* Return true if < MIN_CIRCUITS_TO_OBSERVE */
return !circuit_build_times_enough_to_compute(cbt);
}
/**
* Returns true if we should build a timeout test circuit
* right now.
*/
int
circuit_build_times_needs_circuits_now(const circuit_build_times_t *cbt)
{
return circuit_build_times_needs_circuits(cbt) &&
approx_time()-cbt->last_circ_at > circuit_build_times_test_frequency();
}
/**
* How long should we be unreachable before we think we need to check if
* our published IP address has changed.
*/
#define CIRCUIT_TIMEOUT_BEFORE_RECHECK_IP (60*3)
/**
* Called to indicate that the network showed some signs of liveness,
* i.e. we received a cell.
*
* This is used by circuit_build_times_network_check_live() to decide
* if we should record the circuit build timeout or not.
*
* This function is called every time we receive a cell. Avoid
* syscalls, events, and other high-intensity work.
*/
void
circuit_build_times_network_is_live(circuit_build_times_t *cbt)
{
time_t now = approx_time();
if (cbt->liveness.nonlive_timeouts > 0) {
time_t time_since_live = now - cbt->liveness.network_last_live;
log_notice(LD_CIRC,
"Tor now sees network activity. Restoring circuit build "
"timeout recording. Network was down for %d seconds "
"during %d circuit attempts.",
(int)time_since_live,
cbt->liveness.nonlive_timeouts);
if (time_since_live > CIRCUIT_TIMEOUT_BEFORE_RECHECK_IP)
reschedule_descriptor_update_check();
}
cbt->liveness.network_last_live = now;
cbt->liveness.nonlive_timeouts = 0;
}
/**
* Called to indicate that we completed a circuit. Because this circuit
* succeeded, it doesn't count as a timeout-after-the-first-hop.
*
* This is used by circuit_build_times_network_check_changed() to determine
* if we had too many recent timeouts and need to reset our learned timeout
* to something higher.
*/
void
circuit_build_times_network_circ_success(circuit_build_times_t *cbt)
{
/* Check for NULLness because we might not be using adaptive timeouts */
if (cbt->liveness.timeouts_after_firsthop &&
cbt->liveness.num_recent_circs > 0) {
cbt->liveness.timeouts_after_firsthop[cbt->liveness.after_firsthop_idx]
= 0;
cbt->liveness.after_firsthop_idx++;
cbt->liveness.after_firsthop_idx %= cbt->liveness.num_recent_circs;
}
}
/**
* A circuit just timed out. If it failed after the first hop, record it
* in our history for later deciding if the network speed has changed.
*
* This is used by circuit_build_times_network_check_changed() to determine
* if we had too many recent timeouts and need to reset our learned timeout
* to something higher.
*/
static void
circuit_build_times_network_timeout(circuit_build_times_t *cbt,
int did_onehop)
{
/* Check for NULLness because we might not be using adaptive timeouts */
if (cbt->liveness.timeouts_after_firsthop &&
cbt->liveness.num_recent_circs > 0) {
if (did_onehop) {
cbt->liveness.timeouts_after_firsthop[cbt->liveness.after_firsthop_idx]
= 1;
cbt->liveness.after_firsthop_idx++;
cbt->liveness.after_firsthop_idx %= cbt->liveness.num_recent_circs;
}
}
}
/**
* A circuit was just forcibly closed. If there has been no recent network
* activity at all, but this circuit was launched back when we thought the
* network was live, increment the number of "nonlive" circuit timeouts.
*
* This is used by circuit_build_times_network_check_live() to decide
* if we should record the circuit build timeout or not.
*/
static void
circuit_build_times_network_close(circuit_build_times_t *cbt,
int did_onehop, time_t start_time)
{
time_t now = time(NULL);
/*
* Check if this is a timeout that was for a circuit that spent its
* entire existence during a time where we have had no network activity.
*/
if (cbt->liveness.network_last_live < start_time) {
if (did_onehop) {
char last_live_buf[ISO_TIME_LEN+1];
char start_time_buf[ISO_TIME_LEN+1];
char now_buf[ISO_TIME_LEN+1];
format_local_iso_time(last_live_buf, cbt->liveness.network_last_live);
format_local_iso_time(start_time_buf, start_time);
format_local_iso_time(now_buf, now);
log_notice(LD_CIRC,
"A circuit somehow completed a hop while the network was "
"not live. The network was last live at %s, but the circuit "
"launched at %s. It's now %s. This could mean your clock "
"changed.", last_live_buf, start_time_buf, now_buf);
}
cbt->liveness.nonlive_timeouts++;
if (cbt->liveness.nonlive_timeouts == 1) {
log_notice(LD_CIRC,
"Tor has not observed any network activity for the past %d "
"seconds. Disabling circuit build timeout recording.",
(int)(now - cbt->liveness.network_last_live));
} else {
log_info(LD_CIRC,
"Got non-live timeout. Current count is: %d",
cbt->liveness.nonlive_timeouts);
}
}
}
/**
* When the network is not live, we do not record circuit build times.
*
* The network is considered not live if there has been at least one
* circuit build that began and ended (had its close_ms measurement
* period expire) since we last received a cell.
*
* Also has the side effect of rewinding the circuit time history
* in the case of recent liveness changes.
*/
int
circuit_build_times_network_check_live(const circuit_build_times_t *cbt)
{
if (cbt->liveness.nonlive_timeouts > 0) {
return 0;
}
return 1;
}
/**
* Returns true if we have seen more than MAX_RECENT_TIMEOUT_COUNT of
* the past RECENT_CIRCUITS time out after the first hop. Used to detect
* if the network connection has changed significantly, and if so,
* resets our circuit build timeout to the default.
*
* Also resets the entire timeout history in this case and causes us
* to restart the process of building test circuits and estimating a
* new timeout.
*/
STATIC int
circuit_build_times_network_check_changed(circuit_build_times_t *cbt)
{
int total_build_times = cbt->total_build_times;
int timeout_count=0;
int i;
if (cbt->liveness.timeouts_after_firsthop &&
cbt->liveness.num_recent_circs > 0) {
/* how many of our recent circuits made it to the first hop but then
* timed out? */
for (i = 0; i < cbt->liveness.num_recent_circs; i++) {
timeout_count += cbt->liveness.timeouts_after_firsthop[i];
}
}
/* If 80% of our recent circuits are timing out after the first hop,
* we need to re-estimate a new initial alpha and timeout. */
if (timeout_count < circuit_build_times_max_timeouts()) {
return 0;
}
circuit_build_times_reset(cbt);
if (cbt->liveness.timeouts_after_firsthop &&
cbt->liveness.num_recent_circs > 0) {
memset(cbt->liveness.timeouts_after_firsthop, 0,
sizeof(*cbt->liveness.timeouts_after_firsthop)*
cbt->liveness.num_recent_circs);
}
cbt->liveness.after_firsthop_idx = 0;
#define MAX_TIMEOUT ((int32_t) (INT32_MAX/2))
/* Check to see if this has happened before. If so, double the timeout
* to give people on abysmally bad network connections a shot at access */
if (cbt->timeout_ms >= circuit_build_times_get_initial_timeout()) {
if (cbt->timeout_ms > MAX_TIMEOUT || cbt->close_ms > MAX_TIMEOUT) {
log_warn(LD_CIRC, "Insanely large circuit build timeout value. "
"(timeout = %fmsec, close = %fmsec)",
cbt->timeout_ms, cbt->close_ms);
} else {
cbt->timeout_ms *= 2;
cbt->close_ms *= 2;
}
} else {
cbt->close_ms = cbt->timeout_ms
= circuit_build_times_get_initial_timeout();
}
#undef MAX_TIMEOUT
cbt_control_event_buildtimeout_set(cbt, BUILDTIMEOUT_SET_EVENT_RESET);
log_notice(LD_CIRC,
"Your network connection speed appears to have changed. Resetting "
"timeout to %lds after %d timeouts and %d buildtimes.",
tor_lround(cbt->timeout_ms/1000), timeout_count,
total_build_times);
return 1;
}
/**
* Count the number of timeouts in a set of cbt data.
*/
double
circuit_build_times_timeout_rate(const circuit_build_times_t *cbt)
{
int i=0,timeouts=0;
for (i = 0; i < CBT_NCIRCUITS_TO_OBSERVE; i++) {
if (cbt->circuit_build_times[i] >= cbt->timeout_ms) {
timeouts++;
}
}
if (!cbt->total_build_times)
return 0;
return ((double)timeouts)/cbt->total_build_times;
}
/**
* Count the number of closed circuits in a set of cbt data.
*/
double
circuit_build_times_close_rate(const circuit_build_times_t *cbt)
{
int i=0,closed=0;
for (i = 0; i < CBT_NCIRCUITS_TO_OBSERVE; i++) {
if (cbt->circuit_build_times[i] == CBT_BUILD_ABANDONED) {
closed++;
}
}
if (!cbt->total_build_times)
return 0;
return ((double)closed)/cbt->total_build_times;
}
/**
* Store a timeout as a synthetic value.
*
* Returns true if the store was successful and we should possibly
* update our timeout estimate.
*/
int
circuit_build_times_count_close(circuit_build_times_t *cbt,
int did_onehop,
time_t start_time)
{
if (circuit_build_times_disabled()) {
cbt->close_ms = cbt->timeout_ms
= circuit_build_times_get_initial_timeout();
return 0;
}
/* Record this force-close to help determine if the network is dead */
circuit_build_times_network_close(cbt, did_onehop, start_time);
/* Only count timeouts if network is live.. */
if (!circuit_build_times_network_check_live(cbt)) {
return 0;
}
circuit_build_times_add_time(cbt, CBT_BUILD_ABANDONED);
return 1;
}
/**
* Update timeout counts to determine if we need to expire
* our build time history due to excessive timeouts.
*
* We do not record any actual time values at this stage;
* we are only interested in recording the fact that a timeout
* happened. We record the time values via
* circuit_build_times_count_close() and circuit_build_times_add_time().
*/
void
circuit_build_times_count_timeout(circuit_build_times_t *cbt,
int did_onehop)
{
if (circuit_build_times_disabled()) {
cbt->close_ms = cbt->timeout_ms
= circuit_build_times_get_initial_timeout();
return;
}
/* Register the fact that a timeout just occurred. */
circuit_build_times_network_timeout(cbt, did_onehop);
/* If there are a ton of timeouts, we should reset
* the circuit build timeout. */
circuit_build_times_network_check_changed(cbt);
}
/**
* Estimate a new timeout based on history and set our timeout
* variable accordingly.
*/
static int
circuit_build_times_set_timeout_worker(circuit_build_times_t *cbt)
{
build_time_t max_time;
if (!circuit_build_times_enough_to_compute(cbt))
return 0;
if (!circuit_build_times_update_alpha(cbt))
return 0;
cbt->timeout_ms = circuit_build_times_calculate_timeout(cbt,
circuit_build_times_quantile_cutoff());
cbt->close_ms = circuit_build_times_calculate_timeout(cbt,
circuit_build_times_close_quantile());
max_time = circuit_build_times_max(cbt);
if (cbt->timeout_ms > max_time) {
log_info(LD_CIRC,
"Circuit build timeout of %dms is beyond the maximum build "
"time we have ever observed. Capping it to %dms.",
(int)cbt->timeout_ms, max_time);
cbt->timeout_ms = max_time;
}
if (max_time < INT32_MAX/2 && cbt->close_ms > 2*max_time) {
log_info(LD_CIRC,
"Circuit build measurement period of %dms is more than twice "
"the maximum build time we have ever observed. Capping it to "
"%dms.", (int)cbt->close_ms, 2*max_time);
cbt->close_ms = 2*max_time;
}
/* Sometimes really fast guard nodes give us such a steep curve
* that this ends up being not that much greater than timeout_ms.
* Make it be at least 1 min to handle this case. */
cbt->close_ms = MAX(cbt->close_ms, circuit_build_times_initial_timeout());
cbt->have_computed_timeout = 1;
return 1;
}
/**
* Exposed function to compute a new timeout. Dispatches events and
* also filters out extremely high timeout values.
*/
void
circuit_build_times_set_timeout(circuit_build_times_t *cbt)
{
long prev_timeout = tor_lround(cbt->timeout_ms/1000);
double timeout_rate;
/*
* Just return if we aren't using adaptive timeouts
*/
if (circuit_build_times_disabled())
return;
if (!circuit_build_times_set_timeout_worker(cbt))
return;
if (cbt->timeout_ms < circuit_build_times_min_timeout()) {
log_info(LD_CIRC, "Set buildtimeout to low value %fms. Setting to %dms",
cbt->timeout_ms, circuit_build_times_min_timeout());
cbt->timeout_ms = circuit_build_times_min_timeout();
if (cbt->close_ms < cbt->timeout_ms) {
/* This shouldn't happen because of MAX() in timeout_worker above,
* but doing it just in case */
cbt->close_ms = circuit_build_times_initial_timeout();
}
}
cbt_control_event_buildtimeout_set(cbt, BUILDTIMEOUT_SET_EVENT_COMPUTED);
timeout_rate = circuit_build_times_timeout_rate(cbt);
if (prev_timeout > tor_lround(cbt->timeout_ms/1000)) {
log_info(LD_CIRC,
"Based on %d circuit times, it looks like we don't need to "
"wait so long for circuits to finish. We will now assume a "
"circuit is too slow to use after waiting %ld seconds.",
cbt->total_build_times,
tor_lround(cbt->timeout_ms/1000));
log_info(LD_CIRC,
"Circuit timeout data: %fms, %fms, Xm: %d, a: %f, r: %f",
cbt->timeout_ms, cbt->close_ms, cbt->Xm, cbt->alpha,
timeout_rate);
} else if (prev_timeout < tor_lround(cbt->timeout_ms/1000)) {
log_info(LD_CIRC,
"Based on %d circuit times, it looks like we need to wait "
"longer for circuits to finish. We will now assume a "
"circuit is too slow to use after waiting %ld seconds.",
cbt->total_build_times,
tor_lround(cbt->timeout_ms/1000));
log_info(LD_CIRC,
"Circuit timeout data: %fms, %fms, Xm: %d, a: %f, r: %f",
cbt->timeout_ms, cbt->close_ms, cbt->Xm, cbt->alpha,
timeout_rate);
} else {
log_info(LD_CIRC,
"Set circuit build timeout to %lds (%fms, %fms, Xm: %d, a: %f,"
" r: %f) based on %d circuit times",
tor_lround(cbt->timeout_ms/1000),
cbt->timeout_ms, cbt->close_ms, cbt->Xm, cbt->alpha, timeout_rate,
cbt->total_build_times);
}
}
#ifdef TOR_UNIT_TESTS
/** Make a note that we're running unit tests (rather than running Tor
* itself), so we avoid clobbering our state file. */
void
circuitbuild_running_unit_tests(void)
{
unit_tests = 1;
}
#endif
void
circuit_build_times_update_last_circ(circuit_build_times_t *cbt)
{
cbt->last_circ_at = approx_time();
}
static void
cbt_control_event_buildtimeout_set(const circuit_build_times_t *cbt,
buildtimeout_set_event_t type)
{
char *args = NULL;
double qnt;
2013-08-25 18:22:20 +02:00
switch (type) {
case BUILDTIMEOUT_SET_EVENT_RESET:
case BUILDTIMEOUT_SET_EVENT_SUSPENDED:
case BUILDTIMEOUT_SET_EVENT_DISCARD:
qnt = 1.0;
break;
case BUILDTIMEOUT_SET_EVENT_COMPUTED:
case BUILDTIMEOUT_SET_EVENT_RESUME:
default:
qnt = circuit_build_times_quantile_cutoff();
break;
}
tor_asprintf(&args, "TOTAL_TIMES=%lu "
"TIMEOUT_MS=%lu XM=%lu ALPHA=%f CUTOFF_QUANTILE=%f "
"TIMEOUT_RATE=%f CLOSE_MS=%lu CLOSE_RATE=%f",
(unsigned long)cbt->total_build_times,
(unsigned long)cbt->timeout_ms,
(unsigned long)cbt->Xm, cbt->alpha, qnt,
circuit_build_times_timeout_rate(cbt),
(unsigned long)cbt->close_ms,
circuit_build_times_close_rate(cbt));
control_event_buildtimeout_set(type, args);
tor_free(args);
}
2013-08-25 18:22:20 +02:00