package shamir import ( "crypto/rand" "errors" "fmt" ) var ( ErrPartsLessThanThreshold = errors.New("number of parts cannot be less than the threshold") ErrPartsExceedLimit = errors.New("number of parts cannot exceed 255") ErrThresholdTooSmall = errors.New("threshold must be at least 2") ErrThresholdExceedLimit = errors.New("threshold cannot exceed 255") ErrEmptySecret = errors.New("cannot split an empty secret") ErrInsufficientShares = errors.New("less than two shares cannot be used to reconstruct the secret") ErrSharesTooShort = errors.New("shares must be at least two bytes long") ErrInconsistentShareLength = errors.New("all shares must be the same length") ErrDivisionByZero = errors.New("division by zero") ) type polynomial struct { coeffs []uint8 } func newPolynomial(intercept, degree uint8) (*polynomial, error) { p := &polynomial{ coeffs: make([]uint8, degree+1), } p.coeffs[0] = intercept if _, err := rand.Read(p.coeffs[1:]); err != nil { return nil, fmt.Errorf("failed to generate random coefficients: %w", err) } return p, nil } func (p *polynomial) evaluate(x uint8) uint8 { if x == 0 { return p.coeffs[0] } result := p.coeffs[len(p.coeffs)-1] for i := len(p.coeffs) - 2; i >= 0; i-- { result = gfAdd(gfMult(result, x), p.coeffs[i]) } return result } // Split divides the secret into n shares with a threshold t for reconstruction. func Split(secret []byte, n, t int) ([][]byte, error) { if n < t { return nil, ErrPartsLessThanThreshold } if n > 255 { return nil, ErrPartsExceedLimit } if t < 2 { return nil, ErrThresholdTooSmall } if t > 255 { return nil, ErrThresholdExceedLimit } if len(secret) == 0 { return nil, ErrEmptySecret } xCoords := make([]uint8, n) for i := 0; i < n; i++ { xCoords[i] = uint8(i + 1) } shares := make([][]byte, n) for i := range shares { shares[i] = make([]byte, len(secret)+1) shares[i][len(secret)] = xCoords[i] } for i, b := range secret { p, err := newPolynomial(b, uint8(t-1)) if err != nil { return nil, err } for j := 0; j < n; j++ { shares[j][i] = p.evaluate(xCoords[j]) } } return shares, nil } // Combine reconstructs the secret from the shares. func Combine(shares [][]byte) ([]byte, error) { if len(shares) < 2 { return nil, ErrInsufficientShares } shareLen := len(shares[0]) if shareLen < 2 { return nil, ErrSharesTooShort } for _, share := range shares { if len(share) != shareLen { return nil, ErrInconsistentShareLength } } secret := make([]byte, shareLen-1) xSamples := make([]uint8, len(shares)) ySamples := make([]uint8, len(shares)) for i, share := range shares { xSamples[i] = share[shareLen-1] } for i := range secret { for j, share := range shares { ySamples[j] = share[i] } val, err := interpolatePolynomial(xSamples, ySamples, 0) if err != nil { return nil, err } secret[i] = val } return secret, nil } func interpolatePolynomial(xSamples, ySamples []uint8, x uint8) (uint8, error) { result := uint8(0) for i := range xSamples { num, denom := uint8(1), uint8(1) for j := range xSamples { if i != j { num = gfMult(num, gfAdd(x, xSamples[j])) denom = gfMult(denom, gfAdd(xSamples[i], xSamples[j])) } } term, err := gfDiv(num, denom) if err != nil { return 0, err } result = gfAdd(result, gfMult(ySamples[i], term)) } return result, nil } // Helper functions for arithmetic in GF(2^8) func gfAdd(a, b uint8) uint8 { return a ^ b } func gfMult(a, b uint8) uint8 { var product uint8 for b > 0 { if b&1 == 1 { product ^= a } if a&0x80 > 0 { a = (a << 1) ^ 0x1B } else { a <<= 1 } b >>= 1 } return product } func gfDiv(a, b uint8) (uint8, error) { if b == 0 { return 0, ErrDivisionByZero } return gfMult(a, gfInverse(b)), nil } func gfInverse(a uint8) uint8 { var inv uint8 for b := uint8(1); b != 0; b++ { if gfMult(a, b) == 1 { inv = b break } } return inv }