monero/tests/core_tests/bulletproofs.cpp
mj-xmr 5b4fea72cf Copyright: Update to 2023
Co-authored-by: plowsof <plowsof@protonmail.com>
extra files
2023-01-16 13:00:18 +01:00

396 lines
20 KiB
C++

// Copyright (c) 2014-2023, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include "ringct/rctSigs.h"
#include "ringct/bulletproofs.h"
#include "chaingen.h"
#include "bulletproofs.h"
#include "device/device.hpp"
using namespace epee;
using namespace crypto;
using namespace cryptonote;
//----------------------------------------------------------------------------------------------------------------------
// Tests
bool gen_bp_tx_validation_base::generate_with(std::vector<test_event_entry>& events,
size_t mixin, size_t n_txes, const uint64_t *amounts_paid, bool valid, const rct::RCTConfig *rct_config, uint8_t hf_version,
const std::function<bool(std::vector<tx_source_entry> &sources, std::vector<tx_destination_entry> &destinations, size_t tx_idx)> &pre_tx,
const std::function<bool(transaction &tx, size_t tx_idx)> &post_tx) const
{
uint64_t ts_start = 1338224400;
GENERATE_ACCOUNT(miner_account);
MAKE_GENESIS_BLOCK(events, blk_0, miner_account, ts_start);
// create 12 miner accounts, and have them mine the next 12 blocks
cryptonote::account_base miner_accounts[12];
const cryptonote::block *prev_block = &blk_0;
cryptonote::block blocks[12 + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW];
for (size_t n = 0; n < 12; ++n) {
miner_accounts[n].generate();
CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[n], *prev_block, miner_accounts[n],
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version,
2, 2, prev_block->timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
crypto::hash(), 0, transaction(), std::vector<crypto::hash>(), 0, 0, 2),
false, "Failed to generate block");
events.push_back(blocks[n]);
prev_block = blocks + n;
}
// rewind
cryptonote::block blk_r, blk_last;
{
blk_last = blocks[11];
for (size_t i = 0; i < CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW; ++i)
{
CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[12+i], blk_last, miner_account,
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version,
2, 2, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
crypto::hash(), 0, transaction(), std::vector<crypto::hash>(), 0, 0, 2),
false, "Failed to generate block");
events.push_back(blocks[12+i]);
blk_last = blocks[12+i];
}
blk_r = blk_last;
}
// create 4 txes from these miners in another block, to generate some rct outputs
std::vector<transaction> rct_txes;
cryptonote::block blk_txes;
std::vector<crypto::hash> starting_rct_tx_hashes;
uint64_t fees = 0;
static const uint64_t input_amounts_available[] = {5000000000000, 30000000000000, 100000000000, 80000000000};
for (size_t n = 0; n < n_txes; ++n)
{
std::vector<tx_source_entry> sources;
sources.resize(1);
tx_source_entry& src = sources.back();
const uint64_t needed_amount = input_amounts_available[n];
src.amount = input_amounts_available[n];
size_t real_index_in_tx = 0;
for (size_t m = 0; m <= mixin; ++m) {
size_t index_in_tx = 0;
for (size_t i = 0; i < blocks[m].miner_tx.vout.size(); ++i)
if (blocks[m].miner_tx.vout[i].amount == needed_amount)
index_in_tx = i;
CHECK_AND_ASSERT_MES(blocks[m].miner_tx.vout[index_in_tx].amount == needed_amount, false, "Expected amount not found");
src.push_output(m, boost::get<txout_to_key>(blocks[m].miner_tx.vout[index_in_tx].target).key, src.amount);
if (m == n)
real_index_in_tx = index_in_tx;
}
src.real_out_tx_key = cryptonote::get_tx_pub_key_from_extra(blocks[n].miner_tx);
src.real_output = n;
src.real_output_in_tx_index = real_index_in_tx;
src.mask = rct::identity();
src.rct = false;
//fill outputs entry
tx_destination_entry td;
td.addr = miner_accounts[n].get_keys().m_account_address;
std::vector<tx_destination_entry> destinations;
for (int o = 0; amounts_paid[o] != (uint64_t)-1; ++o)
{
td.amount = amounts_paid[o];
destinations.push_back(td);
}
if (pre_tx && !pre_tx(sources, destinations, n))
{
MDEBUG("pre_tx returned failure");
return false;
}
crypto::secret_key tx_key;
std::vector<crypto::secret_key> additional_tx_keys;
std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
subaddresses[miner_accounts[n].get_keys().m_account_address.m_spend_public_key] = {0,0};
rct_txes.resize(rct_txes.size() + 1);
bool r = construct_tx_and_get_tx_key(miner_accounts[n].get_keys(), subaddresses, sources, destinations, cryptonote::account_public_address{}, std::vector<uint8_t>(), rct_txes.back(), 0, tx_key, additional_tx_keys, true, rct_config[n]);
CHECK_AND_ASSERT_MES(r, false, "failed to construct transaction");
if (post_tx && !post_tx(rct_txes.back(), n))
{
MDEBUG("post_tx returned failure");
return false;
}
//events.push_back(rct_txes.back());
starting_rct_tx_hashes.push_back(get_transaction_hash(rct_txes.back()));
LOG_PRINT_L0("Test tx: " << obj_to_json_str(rct_txes.back()));
for (int o = 0; amounts_paid[o] != (uint64_t)-1; ++o)
{
crypto::key_derivation derivation;
bool r = crypto::generate_key_derivation(destinations[o].addr.m_view_public_key, tx_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "Failed to generate key derivation");
crypto::secret_key amount_key;
crypto::derivation_to_scalar(derivation, o, amount_key);
rct::key rct_tx_mask;
const uint8_t type = rct_txes.back().rct_signatures.type;
if (rct::is_rct_simple(type))
rct::decodeRctSimple(rct_txes.back().rct_signatures, rct::sk2rct(amount_key), o, rct_tx_mask, hw::get_device("default"));
else
rct::decodeRct(rct_txes.back().rct_signatures, rct::sk2rct(amount_key), o, rct_tx_mask, hw::get_device("default"));
}
while (amounts_paid[0] != (size_t)-1)
++amounts_paid;
++amounts_paid;
uint64_t fee = 0;
get_tx_fee(rct_txes.back(), fee);
fees += fee;
}
if (!valid)
DO_CALLBACK(events, "mark_invalid_tx");
events.push_back(rct_txes);
CHECK_AND_ASSERT_MES(generator.construct_block_manually(blk_txes, blk_last, miner_account,
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_tx_hashes | test_generator::bf_hf_version | test_generator::bf_max_outs | test_generator::bf_tx_fees,
hf_version, hf_version, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
crypto::hash(), 0, transaction(), starting_rct_tx_hashes, 0, 6, hf_version, fees),
false, "Failed to generate block");
if (!valid)
DO_CALLBACK(events, "mark_invalid_block");
events.push_back(blk_txes);
blk_last = blk_txes;
return true;
}
bool gen_bp_tx_validation_base::check_bp(const cryptonote::transaction &tx, size_t tx_idx, const size_t *sizes, const char *context) const
{
DEFINE_TESTS_ERROR_CONTEXT(context);
CHECK_TEST_CONDITION(tx.version >= 2);
CHECK_TEST_CONDITION(rct::is_rct_bulletproof(tx.rct_signatures.type));
size_t n_sizes = 0, n_amounts = 0;
for (size_t n = 0; n < tx_idx; ++n)
{
while (sizes[0] != (size_t)-1)
++sizes;
++sizes;
}
while (sizes[n_sizes] != (size_t)-1)
n_amounts += sizes[n_sizes++];
CHECK_TEST_CONDITION(tx.rct_signatures.p.bulletproofs.size() == n_sizes);
CHECK_TEST_CONDITION(rct::n_bulletproof_max_amounts(tx.rct_signatures.p.bulletproofs) == n_amounts);
for (size_t n = 0; n < n_sizes; ++n)
CHECK_TEST_CONDITION(rct::n_bulletproof_max_amounts(tx.rct_signatures.p.bulletproofs[n]) == sizes[n]);
return true;
}
bool gen_bp_tx_valid_1_before_12::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {10000, (uint64_t)-1};
const size_t bp_sizes[] = {1, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 2 } };
return generate_with(events, mixin, 1, amounts_paid, true, rct_config, 11, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_1_before_12"); });
}
bool gen_bp_tx_invalid_1_from_12::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {10000, (uint64_t)-1};
const size_t bp_sizes[] = {1, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 2 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, 12, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_invalid_1_from_12"); });
}
bool gen_bp_tx_invalid_1_1::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBulletproof , 3 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, HF_VERSION_CLSAG, NULL, NULL);
}
bool gen_bp_tx_valid_2::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1};
const size_t bp_sizes[] = {2, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 3 } };
return generate_with(events, mixin, 1, amounts_paid, true, rct_config, HF_VERSION_CLSAG, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_2"); });
}
bool gen_bp_tx_valid_3::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {5000, 5000, 5000, (uint64_t)-1};
const size_t bp_sizes[] = {4, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 3 } };
return generate_with(events, mixin, 1, amounts_paid, true, rct_config, HF_VERSION_CLSAG, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_3"); });
}
bool gen_bp_tx_valid_16::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, (uint64_t)-1};
const size_t bp_sizes[] = {16, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 3 } };
return generate_with(events, mixin, 1, amounts_paid, true, rct_config, HF_VERSION_CLSAG, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_16"); });
}
bool gen_bp_tx_invalid_4_2_1::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {1000, 1000, 1000, 1000, 1000, 1000, 1000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofMultiOutputBulletproof, 3 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, HF_VERSION_CLSAG, NULL, NULL);
}
bool gen_bp_tx_invalid_16_16::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofMultiOutputBulletproof, 3 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, HF_VERSION_CLSAG, NULL, NULL);
}
bool gen_bp_txs_valid_2_and_2::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {1000, 1000, (size_t)-1, 1000, 1000, (uint64_t)-1};
const size_t bp_sizes[] = {2, (size_t)-1, 2, (size_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 3 }, {rct::RangeProofPaddedBulletproof, 3 } };
return generate_with(events, mixin, 2, amounts_paid, true, rct_config, HF_VERSION_CLSAG, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_txs_valid_2_and_2"); });
}
bool gen_bp_txs_invalid_2_and_8_2_and_16_16_1::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {1000, 1000, (uint64_t)-1, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, (uint64_t)-1, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = {{rct::RangeProofMultiOutputBulletproof, 3}, {rct::RangeProofMultiOutputBulletproof, 3}, {rct::RangeProofMultiOutputBulletproof, 3}};
return generate_with(events, mixin, 3, amounts_paid, false, rct_config, HF_VERSION_CLSAG, NULL, NULL);
}
bool gen_bp_txs_valid_2_and_3_and_2_and_4::generate(std::vector<test_event_entry>& events) const
{
const size_t mixin = 10;
const uint64_t amounts_paid[] = {11111115000, 11111115000, (uint64_t)-1, 11111115000, 11111115000, 11111115001, (uint64_t)-1, 11111115000, 11111115002, (uint64_t)-1, 11111115000, 11111115000, 11111115000, 11111115003, (uint64_t)-1};
const rct::RCTConfig rct_config[] = {{rct::RangeProofPaddedBulletproof, 3}, {rct::RangeProofPaddedBulletproof, 3}, {rct::RangeProofPaddedBulletproof, 3}, {rct::RangeProofPaddedBulletproof, 3}};
const size_t bp_sizes[] = {2, (size_t)-1, 4, (size_t)-1, 2, (size_t)-1, 4, (size_t)-1};
return generate_with(events, mixin, 4, amounts_paid, true, rct_config, HF_VERSION_CLSAG, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx) { return check_bp(tx, tx_idx, bp_sizes, "gen_bp_txs_valid_2_and_3_and_2_and_4"); });
}
bool gen_bp_tx_invalid_not_enough_proofs::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_not_enough_proofs");
const size_t mixin = 10;
const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBulletproof, 3 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, HF_VERSION_CLSAG, NULL, [&](cryptonote::transaction &tx, size_t idx){
CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof || tx.rct_signatures.type == rct::RCTTypeBulletproof2 || tx.rct_signatures.type == rct::RCTTypeCLSAG);
CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
tx.rct_signatures.p.bulletproofs.pop_back();
CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
return true;
});
}
bool gen_bp_tx_invalid_empty_proofs::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_empty_proofs");
const size_t mixin = 10;
const uint64_t amounts_paid[] = {50000, 50000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBulletproof, 3 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, HF_VERSION_CLSAG, NULL, [&](cryptonote::transaction &tx, size_t idx){
CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof || tx.rct_signatures.type == rct::RCTTypeBulletproof2 || tx.rct_signatures.type == rct::RCTTypeCLSAG);
tx.rct_signatures.p.bulletproofs.clear();
return true;
});
}
bool gen_bp_tx_invalid_too_many_proofs::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_too_many_proofs");
const size_t mixin = 10;
const uint64_t amounts_paid[] = {10000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBulletproof, 3 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, HF_VERSION_CLSAG, NULL, [&](cryptonote::transaction &tx, size_t idx){
CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof || tx.rct_signatures.type == rct::RCTTypeBulletproof2 || tx.rct_signatures.type == rct::RCTTypeCLSAG);
CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
tx.rct_signatures.p.bulletproofs.push_back(tx.rct_signatures.p.bulletproofs.back());
return true;
});
}
bool gen_bp_tx_invalid_wrong_amount::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_wrong_amount");
const size_t mixin = 10;
const uint64_t amounts_paid[] = {10000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBulletproof, 3 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, HF_VERSION_CLSAG, NULL, [&](cryptonote::transaction &tx, size_t idx){
CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof || tx.rct_signatures.type == rct::RCTTypeBulletproof2 || tx.rct_signatures.type == rct::RCTTypeCLSAG);
CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
tx.rct_signatures.p.bulletproofs.back() = rct::bulletproof_PROVE(1000, rct::skGen());
return true;
});
}
bool gen_bp_tx_invalid_borromean_type::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_borromean_type");
const size_t mixin = 10;
const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofBorromean, 3 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, 11, NULL, [&](cryptonote::transaction &tx, size_t tx_idx){
return true;
});
}
bool gen_bp_tx_invalid_bulletproof2_type::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_bulletproof2_type");
const size_t mixin = 10;
const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 2 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, HF_VERSION_CLSAG + 1, NULL, [&](cryptonote::transaction &tx, size_t tx_idx){
return true;
});
}
bool gen_bp_tx_invalid_clsag_type::generate(std::vector<test_event_entry>& events) const
{
DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_clsag_type");
const size_t mixin = 10;
const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1};
const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 3 } };
return generate_with(events, mixin, 1, amounts_paid, false, rct_config, HF_VERSION_BULLETPROOF_PLUS + 1, NULL, [&](cryptonote::transaction &tx, size_t tx_idx){
return true;
});
}