// Copyright (c) 2017-2023, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #pragma once #include #include #include #include namespace epee { /*! \brief Non-owning sequence of data. Does not deep copy Inspired by `gsl::span` and/or `boost::iterator_range`. This class is intended to be used as a parameter type for functions that need to take a writable or read-only sequence of data. Most common cases are `span` and `span`. Using as a class member is only recommended if clearly documented as not doing a deep-copy. C-arrays are easily convertible to this type. \note Conversion from C string literal to `span` will include the NULL-terminator. \note Never allows derived-to-base pointer conversion; an array of derived types is not an array of base types. */ template class span { template static constexpr bool safe_conversion() noexcept { // Allow exact matches or `T*` -> `const T*`. using with_const = typename std::add_const::type; return std::is_same() || (std::is_const() && std::is_same()); } public: using value_type = T; using size_type = std::size_t; using difference_type = std::ptrdiff_t; using pointer = T*; using const_pointer = const T*; using reference = T&; using const_reference = const T&; using iterator = pointer; using const_iterator = const_pointer; constexpr span() noexcept : ptr(nullptr), len(0) {} constexpr span(std::nullptr_t) noexcept : span() {} //! Prevent derived-to-base conversions; invalid in this context. template()>::type> constexpr span(U* const src_ptr, const std::size_t count) noexcept : ptr(src_ptr), len(count) {} //! Conversion from C-array. Prevents common bugs with sizeof + arrays. template constexpr span(T (&src)[N]) noexcept : span(src, N) {} constexpr span(const span&) noexcept = default; span& operator=(const span&) noexcept = default; /*! Try to remove `amount` elements from beginning of span. \return Number of elements removed. */ std::size_t remove_prefix(std::size_t amount) noexcept { amount = std::min(len, amount); ptr += amount; len -= amount; return amount; } constexpr iterator begin() const noexcept { return ptr; } constexpr const_iterator cbegin() const noexcept { return ptr; } constexpr iterator end() const noexcept { return begin() + size(); } constexpr const_iterator cend() const noexcept { return cbegin() + size(); } constexpr bool empty() const noexcept { return size() == 0; } constexpr pointer data() const noexcept { return ptr; } constexpr std::size_t size() const noexcept { return len; } constexpr std::size_t size_bytes() const noexcept { return size() * sizeof(value_type); } T &operator[](size_t idx) noexcept { return ptr[idx]; } const T &operator[](size_t idx) const noexcept { return ptr[idx]; } private: T* ptr; std::size_t len; }; //! \return `span` from a STL compatible `src`. template constexpr span to_span(const T& src) { // compiler provides diagnostic if size() is not size_t. return {src.data(), src.size()}; } //! \return `span` from a STL compatible `src`. template constexpr span to_mut_span(T& src) { // compiler provides diagnostic if size() is not size_t. return {src.data(), src.size()}; } template constexpr bool has_padding() noexcept { return !std::is_standard_layout() || alignof(T) != 1; } //! \return Cast data from `src` as `span`. template span to_byte_span(const span src) noexcept { static_assert(!has_padding(), "source type may have padding"); return {reinterpret_cast(src.data()), src.size_bytes()}; } //! \return `span` which represents the bytes at `&src`. template span as_byte_span(const T& src) noexcept { static_assert(!std::is_empty(), "empty types will not work -> sizeof == 1"); static_assert(!has_padding(), "source type may have padding"); return {reinterpret_cast(std::addressof(src)), sizeof(T)}; } //! \return `span` which represents the bytes at `&src`. template span as_mut_byte_span(T& src) noexcept { static_assert(!std::is_empty(), "empty types will not work -> sizeof == 1"); static_assert(!has_padding(), "source type may have padding"); return {reinterpret_cast(std::addressof(src)), sizeof(T)}; } //! make a span from a std::string template span strspan(const U&s) noexcept { static_assert(std::is_same(), "unexpected source type"); static_assert(std::is_same() || std::is_same() || std::is_same() || std::is_same(), "Unexpected destination type"); return {reinterpret_cast(s.data()), s.size()}; } }