mirror of
https://github.com/veracrypt/VeraCrypt
synced 2024-11-14 23:23:30 +01:00
1213 lines
30 KiB
C
1213 lines
30 KiB
C
/*
|
|
Legal Notice: Some portions of the source code contained in this file were
|
|
derived from the source code of TrueCrypt 7.1a, which is
|
|
Copyright (c) 2003-2012 TrueCrypt Developers Association and which is
|
|
governed by the TrueCrypt License 3.0, also from the source code of
|
|
Encryption for the Masses 2.02a, which is Copyright (c) 1998-2000 Paul Le Roux
|
|
and which is governed by the 'License Agreement for Encryption for the Masses'
|
|
Modifications and additions to the original source code (contained in this file)
|
|
and all other portions of this file are Copyright (c) 2013-2016 IDRIX
|
|
and are governed by the Apache License 2.0 the full text of which is
|
|
contained in the file License.txt included in VeraCrypt binary and source
|
|
code distribution packages. */
|
|
|
|
#include "Tcdefs.h"
|
|
#if !defined(_UEFI)
|
|
#include <memory.h>
|
|
#include <stdlib.h>
|
|
#endif
|
|
#include "Rmd160.h"
|
|
#ifndef TC_WINDOWS_BOOT
|
|
#include "Sha2.h"
|
|
#include "Whirlpool.h"
|
|
#include "cpu.h"
|
|
#include "misc.h"
|
|
#else
|
|
#pragma optimize ("t", on)
|
|
#include <string.h>
|
|
#if defined( _MSC_VER )
|
|
# ifndef DEBUG
|
|
# pragma intrinsic( memcpy )
|
|
# pragma intrinsic( memset )
|
|
# endif
|
|
#endif
|
|
#include "Sha2Small.h"
|
|
#endif
|
|
#include "Pkcs5.h"
|
|
#include "Crypto.h"
|
|
|
|
void hmac_truncate
|
|
(
|
|
char *d1, /* data to be truncated */
|
|
char *d2, /* truncated data */
|
|
int len /* length in bytes to keep */
|
|
)
|
|
{
|
|
int i;
|
|
for (i = 0; i < len; i++)
|
|
d2[i] = d1[i];
|
|
}
|
|
|
|
#if !defined(TC_WINDOWS_BOOT) || defined(TC_WINDOWS_BOOT_SHA2)
|
|
|
|
typedef struct hmac_sha256_ctx_struct
|
|
{
|
|
sha256_ctx ctx;
|
|
sha256_ctx inner_digest_ctx; /*pre-computed inner digest context */
|
|
sha256_ctx outer_digest_ctx; /*pre-computed outer digest context */
|
|
char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the SHA256 hash */
|
|
char u[SHA256_DIGESTSIZE];
|
|
} hmac_sha256_ctx;
|
|
|
|
void hmac_sha256_internal
|
|
(
|
|
char *d, /* input data. d pointer is guaranteed to be at least 32-bytes long */
|
|
int ld, /* length of input data in bytes */
|
|
hmac_sha256_ctx* hmac /* HMAC-SHA256 context which holds temporary variables */
|
|
)
|
|
{
|
|
sha256_ctx* ctx = &(hmac->ctx);
|
|
|
|
/**** Restore Precomputed Inner Digest Context ****/
|
|
|
|
memcpy (ctx, &(hmac->inner_digest_ctx), sizeof (sha256_ctx));
|
|
|
|
sha256_hash ((unsigned char *) d, ld, ctx);
|
|
|
|
sha256_end ((unsigned char *) d, ctx); /* d = inner digest */
|
|
|
|
/**** Restore Precomputed Outer Digest Context ****/
|
|
|
|
memcpy (ctx, &(hmac->outer_digest_ctx), sizeof (sha256_ctx));
|
|
|
|
sha256_hash ((unsigned char *) d, SHA256_DIGESTSIZE, ctx);
|
|
|
|
sha256_end ((unsigned char *) d, ctx); /* d = outer digest */
|
|
}
|
|
|
|
#ifndef TC_WINDOWS_BOOT
|
|
void hmac_sha256
|
|
(
|
|
char *k, /* secret key */
|
|
int lk, /* length of the key in bytes */
|
|
char *d, /* data */
|
|
int ld /* length of data in bytes */
|
|
)
|
|
{
|
|
hmac_sha256_ctx hmac;
|
|
sha256_ctx* ctx;
|
|
char* buf = hmac.k;
|
|
int b;
|
|
char key[SHA256_DIGESTSIZE];
|
|
/* If the key is longer than the hash algorithm block size,
|
|
let key = sha256(key), as per HMAC specifications. */
|
|
if (lk > SHA256_BLOCKSIZE)
|
|
{
|
|
sha256_ctx tctx;
|
|
|
|
sha256_begin (&tctx);
|
|
sha256_hash ((unsigned char *) k, lk, &tctx);
|
|
sha256_end ((unsigned char *) key, &tctx);
|
|
|
|
k = key;
|
|
lk = SHA256_DIGESTSIZE;
|
|
|
|
burn (&tctx, sizeof(tctx)); // Prevent leaks
|
|
}
|
|
|
|
/**** Precompute HMAC Inner Digest ****/
|
|
|
|
ctx = &(hmac.inner_digest_ctx);
|
|
sha256_begin (ctx);
|
|
|
|
/* Pad the key for inner digest */
|
|
for (b = 0; b < lk; ++b)
|
|
buf[b] = (char) (k[b] ^ 0x36);
|
|
memset (&buf[lk], 0x36, SHA256_BLOCKSIZE - lk);
|
|
|
|
sha256_hash ((unsigned char *) buf, SHA256_BLOCKSIZE, ctx);
|
|
|
|
/**** Precompute HMAC Outer Digest ****/
|
|
|
|
ctx = &(hmac.outer_digest_ctx);
|
|
sha256_begin (ctx);
|
|
|
|
for (b = 0; b < lk; ++b)
|
|
buf[b] = (char) (k[b] ^ 0x5C);
|
|
memset (&buf[lk], 0x5C, SHA256_BLOCKSIZE - lk);
|
|
|
|
sha256_hash ((unsigned char *) buf, SHA256_BLOCKSIZE, ctx);
|
|
|
|
hmac_sha256_internal(d, ld, &hmac);
|
|
/* Prevent leaks */
|
|
burn(&hmac, sizeof(hmac));
|
|
burn(key, sizeof(key));
|
|
}
|
|
#endif
|
|
|
|
static void derive_u_sha256 (char *salt, int salt_len, uint32 iterations, int b, hmac_sha256_ctx* hmac)
|
|
{
|
|
char* k = hmac->k;
|
|
char* u = hmac->u;
|
|
uint32 c;
|
|
int i;
|
|
|
|
#ifdef TC_WINDOWS_BOOT
|
|
/* In bootloader mode, least significant bit of iterations is a boolean (TRUE for boot derivation mode, FALSE otherwise)
|
|
* and the most significant 16 bits hold the pim value
|
|
* This enables us to save code space needed for implementing other features.
|
|
*/
|
|
c = iterations >> 16;
|
|
i = ((int) iterations) & 0x01;
|
|
if (i)
|
|
c = (c == 0)? 200000 : c << 11;
|
|
else
|
|
c = (c == 0)? 500000 : 15000 + c * 1000;
|
|
#else
|
|
c = iterations;
|
|
#endif
|
|
|
|
/* iteration 1 */
|
|
memcpy (k, salt, salt_len); /* salt */
|
|
|
|
/* big-endian block number */
|
|
#ifdef TC_WINDOWS_BOOT
|
|
/* specific case of 16-bit bootloader: b is a 16-bit integer that is always < 256 */
|
|
memset (&k[salt_len], 0, 3);
|
|
k[salt_len + 3] = (char) b;
|
|
#else
|
|
b = bswap_32 (b);
|
|
memcpy (&k[salt_len], &b, 4);
|
|
#endif
|
|
|
|
hmac_sha256_internal (k, salt_len + 4, hmac);
|
|
memcpy (u, k, SHA256_DIGESTSIZE);
|
|
|
|
/* remaining iterations */
|
|
while (c > 1)
|
|
{
|
|
hmac_sha256_internal (k, SHA256_DIGESTSIZE, hmac);
|
|
for (i = 0; i < SHA256_DIGESTSIZE; i++)
|
|
{
|
|
u[i] ^= k[i];
|
|
}
|
|
c--;
|
|
}
|
|
}
|
|
|
|
|
|
void derive_key_sha256 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
|
|
{
|
|
hmac_sha256_ctx hmac;
|
|
sha256_ctx* ctx;
|
|
char* buf = hmac.k;
|
|
int b, l, r;
|
|
#ifndef TC_WINDOWS_BOOT
|
|
char key[SHA256_DIGESTSIZE];
|
|
/* If the password is longer than the hash algorithm block size,
|
|
let pwd = sha256(pwd), as per HMAC specifications. */
|
|
if (pwd_len > SHA256_BLOCKSIZE)
|
|
{
|
|
sha256_ctx tctx;
|
|
|
|
sha256_begin (&tctx);
|
|
sha256_hash ((unsigned char *) pwd, pwd_len, &tctx);
|
|
sha256_end ((unsigned char *) key, &tctx);
|
|
|
|
pwd = key;
|
|
pwd_len = SHA256_DIGESTSIZE;
|
|
|
|
burn (&tctx, sizeof(tctx)); // Prevent leaks
|
|
}
|
|
#endif
|
|
|
|
if (dklen % SHA256_DIGESTSIZE)
|
|
{
|
|
l = 1 + dklen / SHA256_DIGESTSIZE;
|
|
}
|
|
else
|
|
{
|
|
l = dklen / SHA256_DIGESTSIZE;
|
|
}
|
|
|
|
r = dklen - (l - 1) * SHA256_DIGESTSIZE;
|
|
|
|
/**** Precompute HMAC Inner Digest ****/
|
|
|
|
ctx = &(hmac.inner_digest_ctx);
|
|
sha256_begin (ctx);
|
|
|
|
/* Pad the key for inner digest */
|
|
for (b = 0; b < pwd_len; ++b)
|
|
buf[b] = (char) (pwd[b] ^ 0x36);
|
|
memset (&buf[pwd_len], 0x36, SHA256_BLOCKSIZE - pwd_len);
|
|
|
|
sha256_hash ((unsigned char *) buf, SHA256_BLOCKSIZE, ctx);
|
|
|
|
/**** Precompute HMAC Outer Digest ****/
|
|
|
|
ctx = &(hmac.outer_digest_ctx);
|
|
sha256_begin (ctx);
|
|
|
|
for (b = 0; b < pwd_len; ++b)
|
|
buf[b] = (char) (pwd[b] ^ 0x5C);
|
|
memset (&buf[pwd_len], 0x5C, SHA256_BLOCKSIZE - pwd_len);
|
|
|
|
sha256_hash ((unsigned char *) buf, SHA256_BLOCKSIZE, ctx);
|
|
|
|
/* first l - 1 blocks */
|
|
for (b = 1; b < l; b++)
|
|
{
|
|
derive_u_sha256 (salt, salt_len, iterations, b, &hmac);
|
|
memcpy (dk, hmac.u, SHA256_DIGESTSIZE);
|
|
dk += SHA256_DIGESTSIZE;
|
|
}
|
|
|
|
/* last block */
|
|
derive_u_sha256 (salt, salt_len, iterations, b, &hmac);
|
|
memcpy (dk, hmac.u, r);
|
|
|
|
|
|
/* Prevent possible leaks. */
|
|
burn (&hmac, sizeof(hmac));
|
|
#ifndef TC_WINDOWS_BOOT
|
|
burn (key, sizeof(key));
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef TC_WINDOWS_BOOT
|
|
|
|
typedef struct hmac_sha512_ctx_struct
|
|
{
|
|
sha512_ctx ctx;
|
|
sha512_ctx inner_digest_ctx; /*pre-computed inner digest context */
|
|
sha512_ctx outer_digest_ctx; /*pre-computed outer digest context */
|
|
char k[SHA512_BLOCKSIZE]; /* enough to hold (salt_len + 4) and also the SHA512 hash */
|
|
char u[SHA512_DIGESTSIZE];
|
|
} hmac_sha512_ctx;
|
|
|
|
void hmac_sha512_internal
|
|
(
|
|
char *d, /* data and also output buffer of at least 64 bytes */
|
|
int ld, /* length of data in bytes */
|
|
hmac_sha512_ctx* hmac
|
|
)
|
|
{
|
|
sha512_ctx* ctx = &(hmac->ctx);
|
|
|
|
/**** Restore Precomputed Inner Digest Context ****/
|
|
|
|
memcpy (ctx, &(hmac->inner_digest_ctx), sizeof (sha512_ctx));
|
|
|
|
sha512_hash ((unsigned char *) d, ld, ctx);
|
|
|
|
sha512_end ((unsigned char *) d, ctx);
|
|
|
|
/**** Restore Precomputed Outer Digest Context ****/
|
|
|
|
memcpy (ctx, &(hmac->outer_digest_ctx), sizeof (sha512_ctx));
|
|
|
|
sha512_hash ((unsigned char *) d, SHA512_DIGESTSIZE, ctx);
|
|
|
|
sha512_end ((unsigned char *) d, ctx);
|
|
}
|
|
|
|
void hmac_sha512
|
|
(
|
|
char *k, /* secret key */
|
|
int lk, /* length of the key in bytes */
|
|
char *d, /* data and also output buffer of at least 64 bytes */
|
|
int ld /* length of data in bytes */
|
|
)
|
|
{
|
|
hmac_sha512_ctx hmac;
|
|
sha512_ctx* ctx;
|
|
char* buf = hmac.k;
|
|
int b;
|
|
char key[SHA512_DIGESTSIZE];
|
|
|
|
/* If the key is longer than the hash algorithm block size,
|
|
let key = sha512(key), as per HMAC specifications. */
|
|
if (lk > SHA512_BLOCKSIZE)
|
|
{
|
|
sha512_ctx tctx;
|
|
|
|
sha512_begin (&tctx);
|
|
sha512_hash ((unsigned char *) k, lk, &tctx);
|
|
sha512_end ((unsigned char *) key, &tctx);
|
|
|
|
k = key;
|
|
lk = SHA512_DIGESTSIZE;
|
|
|
|
burn (&tctx, sizeof(tctx)); // Prevent leaks
|
|
}
|
|
|
|
/**** Precompute HMAC Inner Digest ****/
|
|
|
|
ctx = &(hmac.inner_digest_ctx);
|
|
sha512_begin (ctx);
|
|
|
|
/* Pad the key for inner digest */
|
|
for (b = 0; b < lk; ++b)
|
|
buf[b] = (char) (k[b] ^ 0x36);
|
|
memset (&buf[lk], 0x36, SHA512_BLOCKSIZE - lk);
|
|
|
|
sha512_hash ((unsigned char *) buf, SHA512_BLOCKSIZE, ctx);
|
|
|
|
/**** Precompute HMAC Outer Digest ****/
|
|
|
|
ctx = &(hmac.outer_digest_ctx);
|
|
sha512_begin (ctx);
|
|
|
|
for (b = 0; b < lk; ++b)
|
|
buf[b] = (char) (k[b] ^ 0x5C);
|
|
memset (&buf[lk], 0x5C, SHA512_BLOCKSIZE - lk);
|
|
|
|
sha512_hash ((unsigned char *) buf, SHA512_BLOCKSIZE, ctx);
|
|
|
|
hmac_sha512_internal (d, ld, &hmac);
|
|
|
|
/* Prevent leaks */
|
|
burn (&hmac, sizeof(hmac));
|
|
burn (key, sizeof(key));
|
|
}
|
|
|
|
static void derive_u_sha512 (char *salt, int salt_len, uint32 iterations, int b, hmac_sha512_ctx* hmac)
|
|
{
|
|
char* k = hmac->k;
|
|
char* u = hmac->u;
|
|
uint32 c, i;
|
|
|
|
/* iteration 1 */
|
|
memcpy (k, salt, salt_len); /* salt */
|
|
/* big-endian block number */
|
|
b = bswap_32 (b);
|
|
memcpy (&k[salt_len], &b, 4);
|
|
|
|
hmac_sha512_internal (k, salt_len + 4, hmac);
|
|
memcpy (u, k, SHA512_DIGESTSIZE);
|
|
|
|
/* remaining iterations */
|
|
for (c = 1; c < iterations; c++)
|
|
{
|
|
hmac_sha512_internal (k, SHA512_DIGESTSIZE, hmac);
|
|
for (i = 0; i < SHA512_DIGESTSIZE; i++)
|
|
{
|
|
u[i] ^= k[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void derive_key_sha512 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
|
|
{
|
|
hmac_sha512_ctx hmac;
|
|
sha512_ctx* ctx;
|
|
char* buf = hmac.k;
|
|
int b, l, r;
|
|
char key[SHA512_DIGESTSIZE];
|
|
|
|
/* If the password is longer than the hash algorithm block size,
|
|
let pwd = sha512(pwd), as per HMAC specifications. */
|
|
if (pwd_len > SHA512_BLOCKSIZE)
|
|
{
|
|
sha512_ctx tctx;
|
|
|
|
sha512_begin (&tctx);
|
|
sha512_hash ((unsigned char *) pwd, pwd_len, &tctx);
|
|
sha512_end ((unsigned char *) key, &tctx);
|
|
|
|
pwd = key;
|
|
pwd_len = SHA512_DIGESTSIZE;
|
|
|
|
burn (&tctx, sizeof(tctx)); // Prevent leaks
|
|
}
|
|
|
|
if (dklen % SHA512_DIGESTSIZE)
|
|
{
|
|
l = 1 + dklen / SHA512_DIGESTSIZE;
|
|
}
|
|
else
|
|
{
|
|
l = dklen / SHA512_DIGESTSIZE;
|
|
}
|
|
|
|
r = dklen - (l - 1) * SHA512_DIGESTSIZE;
|
|
|
|
/**** Precompute HMAC Inner Digest ****/
|
|
|
|
ctx = &(hmac.inner_digest_ctx);
|
|
sha512_begin (ctx);
|
|
|
|
/* Pad the key for inner digest */
|
|
for (b = 0; b < pwd_len; ++b)
|
|
buf[b] = (char) (pwd[b] ^ 0x36);
|
|
memset (&buf[pwd_len], 0x36, SHA512_BLOCKSIZE - pwd_len);
|
|
|
|
sha512_hash ((unsigned char *) buf, SHA512_BLOCKSIZE, ctx);
|
|
|
|
/**** Precompute HMAC Outer Digest ****/
|
|
|
|
ctx = &(hmac.outer_digest_ctx);
|
|
sha512_begin (ctx);
|
|
|
|
for (b = 0; b < pwd_len; ++b)
|
|
buf[b] = (char) (pwd[b] ^ 0x5C);
|
|
memset (&buf[pwd_len], 0x5C, SHA512_BLOCKSIZE - pwd_len);
|
|
|
|
sha512_hash ((unsigned char *) buf, SHA512_BLOCKSIZE, ctx);
|
|
|
|
/* first l - 1 blocks */
|
|
for (b = 1; b < l; b++)
|
|
{
|
|
derive_u_sha512 (salt, salt_len, iterations, b, &hmac);
|
|
memcpy (dk, hmac.u, SHA512_DIGESTSIZE);
|
|
dk += SHA512_DIGESTSIZE;
|
|
}
|
|
|
|
/* last block */
|
|
derive_u_sha512 (salt, salt_len, iterations, b, &hmac);
|
|
memcpy (dk, hmac.u, r);
|
|
|
|
|
|
/* Prevent possible leaks. */
|
|
burn (&hmac, sizeof(hmac));
|
|
burn (key, sizeof(key));
|
|
}
|
|
|
|
#endif // TC_WINDOWS_BOOT
|
|
|
|
#if !defined(TC_WINDOWS_BOOT) || defined(TC_WINDOWS_BOOT_RIPEMD160)
|
|
|
|
typedef struct hmac_ripemd160_ctx_struct
|
|
{
|
|
RMD160_CTX context;
|
|
RMD160_CTX inner_digest_ctx; /*pre-computed inner digest context */
|
|
RMD160_CTX outer_digest_ctx; /*pre-computed outer digest context */
|
|
char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the RIPEMD-160 hash */
|
|
char u[RIPEMD160_DIGESTSIZE];
|
|
} hmac_ripemd160_ctx;
|
|
|
|
void hmac_ripemd160_internal (char *input_digest, int len, hmac_ripemd160_ctx* hmac)
|
|
{
|
|
RMD160_CTX* context = &(hmac->context);
|
|
|
|
/**** Restore Precomputed Inner Digest Context ****/
|
|
|
|
memcpy (context, &(hmac->inner_digest_ctx), sizeof (RMD160_CTX));
|
|
|
|
RMD160Update(context, (const unsigned char *) input_digest, len); /* then text of datagram */
|
|
RMD160Final((unsigned char *) input_digest, context); /* finish up 1st pass */
|
|
|
|
/**** Restore Precomputed Outer Digest Context ****/
|
|
|
|
memcpy (context, &(hmac->outer_digest_ctx), sizeof (RMD160_CTX));
|
|
|
|
/* results of 1st hash */
|
|
RMD160Update(context, (const unsigned char *) input_digest, RIPEMD160_DIGESTSIZE);
|
|
RMD160Final((unsigned char *) input_digest, context); /* finish up 2nd pass */
|
|
}
|
|
|
|
#ifndef TC_WINDOWS_BOOT
|
|
void hmac_ripemd160 (char *key, int keylen, char *input_digest, int len)
|
|
{
|
|
hmac_ripemd160_ctx hmac;
|
|
RMD160_CTX* ctx;
|
|
unsigned char* k_pad = (unsigned char*) hmac.k; /* inner/outer padding - key XORd with ipad */
|
|
unsigned char tk[RIPEMD160_DIGESTSIZE];
|
|
int i;
|
|
|
|
/* If the key is longer than the hash algorithm block size,
|
|
let key = ripemd160(key), as per HMAC specifications. */
|
|
if (keylen > RIPEMD160_BLOCKSIZE)
|
|
{
|
|
RMD160_CTX tctx;
|
|
|
|
RMD160Init(&tctx);
|
|
RMD160Update(&tctx, (const unsigned char *) key, keylen);
|
|
RMD160Final(tk, &tctx);
|
|
|
|
key = (char *) tk;
|
|
keylen = RIPEMD160_DIGESTSIZE;
|
|
|
|
burn (&tctx, sizeof(tctx)); // Prevent leaks
|
|
}
|
|
|
|
/* perform inner RIPEMD-160 */
|
|
ctx = &(hmac.inner_digest_ctx);
|
|
/* start out by storing key in pads */
|
|
memset(k_pad, 0x36, 64);
|
|
/* XOR key with ipad and opad values */
|
|
for (i=0; i<keylen; i++)
|
|
{
|
|
k_pad[i] ^= key[i];
|
|
}
|
|
|
|
RMD160Init(ctx); /* init context for 1st pass */
|
|
RMD160Update(ctx, k_pad, RIPEMD160_BLOCKSIZE); /* start with inner pad */
|
|
|
|
/* perform outer RIPEMD-160 */
|
|
ctx = &(hmac.outer_digest_ctx);
|
|
memset(k_pad, 0x5c, 64);
|
|
for (i=0; i<keylen; i++)
|
|
{
|
|
k_pad[i] ^= key[i];
|
|
}
|
|
|
|
RMD160Init(ctx); /* init context for 2nd pass */
|
|
RMD160Update(ctx, k_pad, RIPEMD160_BLOCKSIZE); /* start with outer pad */
|
|
|
|
hmac_ripemd160_internal (input_digest, len, &hmac);
|
|
|
|
burn (&hmac, sizeof(hmac));
|
|
burn (tk, sizeof(tk));
|
|
}
|
|
#endif
|
|
|
|
|
|
static void derive_u_ripemd160 (char *salt, int salt_len, uint32 iterations, int b, hmac_ripemd160_ctx* hmac)
|
|
{
|
|
char* k = hmac->k;
|
|
char* u = hmac->u;
|
|
uint32 c;
|
|
int i;
|
|
|
|
#ifdef TC_WINDOWS_BOOT
|
|
/* In bootloader mode, least significant bit of iterations is a boolean (TRUE for boot derivation mode, FALSE otherwise)
|
|
* and the most significant 16 bits hold the pim value
|
|
* This enables us to save code space needed for implementing other features.
|
|
*/
|
|
c = iterations >> 16;
|
|
i = ((int) iterations) & 0x01;
|
|
if (i)
|
|
c = (c == 0)? 327661 : c << 11;
|
|
else
|
|
c = (c == 0)? 655331 : 15000 + c * 1000;
|
|
#else
|
|
c = iterations;
|
|
#endif
|
|
|
|
/* iteration 1 */
|
|
memcpy (k, salt, salt_len); /* salt */
|
|
|
|
/* big-endian block number */
|
|
#ifdef TC_WINDOWS_BOOT
|
|
/* specific case of 16-bit bootloader: b is a 16-bit integer that is always < 256*/
|
|
memset (&k[salt_len], 0, 3);
|
|
k[salt_len + 3] = (char) b;
|
|
#else
|
|
b = bswap_32 (b);
|
|
memcpy (&k[salt_len], &b, 4);
|
|
#endif
|
|
|
|
hmac_ripemd160_internal (k, salt_len + 4, hmac);
|
|
memcpy (u, k, RIPEMD160_DIGESTSIZE);
|
|
|
|
/* remaining iterations */
|
|
while ( c > 1)
|
|
{
|
|
hmac_ripemd160_internal (k, RIPEMD160_DIGESTSIZE, hmac);
|
|
for (i = 0; i < RIPEMD160_DIGESTSIZE; i++)
|
|
{
|
|
u[i] ^= k[i];
|
|
}
|
|
c--;
|
|
}
|
|
}
|
|
|
|
void derive_key_ripemd160 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
|
|
{
|
|
int b, l, r;
|
|
hmac_ripemd160_ctx hmac;
|
|
RMD160_CTX* ctx;
|
|
unsigned char* k_pad = (unsigned char*) hmac.k;
|
|
#ifndef TC_WINDOWS_BOOT
|
|
unsigned char tk[RIPEMD160_DIGESTSIZE];
|
|
/* If the password is longer than the hash algorithm block size,
|
|
let password = ripemd160(password), as per HMAC specifications. */
|
|
if (pwd_len > RIPEMD160_BLOCKSIZE)
|
|
{
|
|
RMD160_CTX tctx;
|
|
|
|
RMD160Init(&tctx);
|
|
RMD160Update(&tctx, (const unsigned char *) pwd, pwd_len);
|
|
RMD160Final(tk, &tctx);
|
|
|
|
pwd = (char *) tk;
|
|
pwd_len = RIPEMD160_DIGESTSIZE;
|
|
|
|
burn (&tctx, sizeof(tctx)); // Prevent leaks
|
|
}
|
|
#endif
|
|
|
|
if (dklen % RIPEMD160_DIGESTSIZE)
|
|
{
|
|
l = 1 + dklen / RIPEMD160_DIGESTSIZE;
|
|
}
|
|
else
|
|
{
|
|
l = dklen / RIPEMD160_DIGESTSIZE;
|
|
}
|
|
|
|
r = dklen - (l - 1) * RIPEMD160_DIGESTSIZE;
|
|
|
|
/* perform inner RIPEMD-160 */
|
|
ctx = &(hmac.inner_digest_ctx);
|
|
/* start out by storing key in pads */
|
|
memset(k_pad, 0x36, 64);
|
|
/* XOR key with ipad and opad values */
|
|
for (b=0; b<pwd_len; b++)
|
|
{
|
|
k_pad[b] ^= pwd[b];
|
|
}
|
|
|
|
RMD160Init(ctx); /* init context for 1st pass */
|
|
RMD160Update(ctx, k_pad, RIPEMD160_BLOCKSIZE); /* start with inner pad */
|
|
|
|
/* perform outer RIPEMD-160 */
|
|
ctx = &(hmac.outer_digest_ctx);
|
|
memset(k_pad, 0x5c, 64);
|
|
for (b=0; b<pwd_len; b++)
|
|
{
|
|
k_pad[b] ^= pwd[b];
|
|
}
|
|
|
|
RMD160Init(ctx); /* init context for 2nd pass */
|
|
RMD160Update(ctx, k_pad, RIPEMD160_BLOCKSIZE); /* start with outer pad */
|
|
|
|
/* first l - 1 blocks */
|
|
for (b = 1; b < l; b++)
|
|
{
|
|
derive_u_ripemd160 (salt, salt_len, iterations, b, &hmac);
|
|
memcpy (dk, hmac.u, RIPEMD160_DIGESTSIZE);
|
|
dk += RIPEMD160_DIGESTSIZE;
|
|
}
|
|
|
|
/* last block */
|
|
derive_u_ripemd160 (salt, salt_len, iterations, b, &hmac);
|
|
memcpy (dk, hmac.u, r);
|
|
|
|
|
|
/* Prevent possible leaks. */
|
|
burn (&hmac, sizeof(hmac));
|
|
#ifndef TC_WINDOWS_BOOT
|
|
burn (tk, sizeof(tk));
|
|
#endif
|
|
}
|
|
#endif // TC_WINDOWS_BOOT
|
|
|
|
#ifndef TC_WINDOWS_BOOT
|
|
|
|
typedef struct hmac_whirlpool_ctx_struct
|
|
{
|
|
WHIRLPOOL_CTX ctx;
|
|
WHIRLPOOL_CTX inner_digest_ctx; /*pre-computed inner digest context */
|
|
WHIRLPOOL_CTX outer_digest_ctx; /*pre-computed outer digest context */
|
|
CRYPTOPP_ALIGN_DATA(16) char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the Whirlpool hash */
|
|
char u[WHIRLPOOL_DIGESTSIZE];
|
|
} hmac_whirlpool_ctx;
|
|
|
|
void hmac_whirlpool_internal
|
|
(
|
|
char *d, /* input/output data. d pointer is guaranteed to be at least 64-bytes long */
|
|
int ld, /* length of input data in bytes */
|
|
hmac_whirlpool_ctx* hmac /* HMAC-Whirlpool context which holds temporary variables */
|
|
)
|
|
{
|
|
WHIRLPOOL_CTX* ctx = &(hmac->ctx);
|
|
|
|
/**** Restore Precomputed Inner Digest Context ****/
|
|
|
|
memcpy (ctx, &(hmac->inner_digest_ctx), sizeof (WHIRLPOOL_CTX));
|
|
|
|
WHIRLPOOL_add ((unsigned char *) d, ld, ctx);
|
|
|
|
WHIRLPOOL_finalize (ctx, (unsigned char *) d);
|
|
|
|
/**** Restore Precomputed Outer Digest Context ****/
|
|
|
|
memcpy (ctx, &(hmac->outer_digest_ctx), sizeof (WHIRLPOOL_CTX));
|
|
|
|
WHIRLPOOL_add ((unsigned char *) d, WHIRLPOOL_DIGESTSIZE, ctx);
|
|
|
|
WHIRLPOOL_finalize (ctx, (unsigned char *) d);
|
|
}
|
|
|
|
void hmac_whirlpool
|
|
(
|
|
char *k, /* secret key */
|
|
int lk, /* length of the key in bytes */
|
|
char *d, /* input data. d pointer is guaranteed to be at least 32-bytes long */
|
|
int ld /* length of data in bytes */
|
|
)
|
|
{
|
|
hmac_whirlpool_ctx hmac;
|
|
WHIRLPOOL_CTX* ctx;
|
|
char* buf = hmac.k;
|
|
int b;
|
|
char key[WHIRLPOOL_DIGESTSIZE];
|
|
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
|
|
KFLOATING_SAVE floatingPointState;
|
|
NTSTATUS saveStatus = STATUS_SUCCESS;
|
|
if (HasISSE())
|
|
saveStatus = KeSaveFloatingPointState (&floatingPointState);
|
|
#endif
|
|
/* If the key is longer than the hash algorithm block size,
|
|
let key = whirlpool(key), as per HMAC specifications. */
|
|
if (lk > WHIRLPOOL_BLOCKSIZE)
|
|
{
|
|
WHIRLPOOL_CTX tctx;
|
|
|
|
WHIRLPOOL_init (&tctx);
|
|
WHIRLPOOL_add ((unsigned char *) k, lk, &tctx);
|
|
WHIRLPOOL_finalize (&tctx, (unsigned char *) key);
|
|
|
|
k = key;
|
|
lk = WHIRLPOOL_DIGESTSIZE;
|
|
|
|
burn (&tctx, sizeof(tctx)); // Prevent leaks
|
|
}
|
|
|
|
/**** Precompute HMAC Inner Digest ****/
|
|
|
|
ctx = &(hmac.inner_digest_ctx);
|
|
WHIRLPOOL_init (ctx);
|
|
|
|
/* Pad the key for inner digest */
|
|
for (b = 0; b < lk; ++b)
|
|
buf[b] = (char) (k[b] ^ 0x36);
|
|
memset (&buf[lk], 0x36, WHIRLPOOL_BLOCKSIZE - lk);
|
|
|
|
WHIRLPOOL_add ((unsigned char *) buf, WHIRLPOOL_BLOCKSIZE, ctx);
|
|
|
|
/**** Precompute HMAC Outer Digest ****/
|
|
|
|
ctx = &(hmac.outer_digest_ctx);
|
|
WHIRLPOOL_init (ctx);
|
|
|
|
for (b = 0; b < lk; ++b)
|
|
buf[b] = (char) (k[b] ^ 0x5C);
|
|
memset (&buf[lk], 0x5C, WHIRLPOOL_BLOCKSIZE - lk);
|
|
|
|
WHIRLPOOL_add ((unsigned char *) buf, WHIRLPOOL_BLOCKSIZE, ctx);
|
|
|
|
hmac_whirlpool_internal(d, ld, &hmac);
|
|
|
|
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
|
|
if (NT_SUCCESS (saveStatus) && HasISSE())
|
|
KeRestoreFloatingPointState (&floatingPointState);
|
|
#endif
|
|
/* Prevent leaks */
|
|
burn(&hmac, sizeof(hmac));
|
|
}
|
|
|
|
static void derive_u_whirlpool (char *salt, int salt_len, uint32 iterations, int b, hmac_whirlpool_ctx* hmac)
|
|
{
|
|
char* u = hmac->u;
|
|
char* k = hmac->k;
|
|
uint32 c, i;
|
|
|
|
/* iteration 1 */
|
|
memcpy (k, salt, salt_len); /* salt */
|
|
/* big-endian block number */
|
|
b = bswap_32 (b);
|
|
memcpy (&k[salt_len], &b, 4);
|
|
|
|
hmac_whirlpool_internal (k, salt_len + 4, hmac);
|
|
memcpy (u, k, WHIRLPOOL_DIGESTSIZE);
|
|
|
|
/* remaining iterations */
|
|
for (c = 1; c < iterations; c++)
|
|
{
|
|
hmac_whirlpool_internal (k, WHIRLPOOL_DIGESTSIZE, hmac);
|
|
for (i = 0; i < WHIRLPOOL_DIGESTSIZE; i++)
|
|
{
|
|
u[i] ^= k[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
void derive_key_whirlpool (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
|
|
{
|
|
hmac_whirlpool_ctx hmac;
|
|
WHIRLPOOL_CTX* ctx;
|
|
char* buf = hmac.k;
|
|
char key[WHIRLPOOL_DIGESTSIZE];
|
|
int b, l, r;
|
|
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
|
|
KFLOATING_SAVE floatingPointState;
|
|
NTSTATUS saveStatus = STATUS_SUCCESS;
|
|
if (HasISSE())
|
|
saveStatus = KeSaveFloatingPointState (&floatingPointState);
|
|
#endif
|
|
/* If the password is longer than the hash algorithm block size,
|
|
let pwd = whirlpool(pwd), as per HMAC specifications. */
|
|
if (pwd_len > WHIRLPOOL_BLOCKSIZE)
|
|
{
|
|
WHIRLPOOL_CTX tctx;
|
|
|
|
WHIRLPOOL_init (&tctx);
|
|
WHIRLPOOL_add ((unsigned char *) pwd, pwd_len, &tctx);
|
|
WHIRLPOOL_finalize (&tctx, (unsigned char *) key);
|
|
|
|
pwd = key;
|
|
pwd_len = WHIRLPOOL_DIGESTSIZE;
|
|
|
|
burn (&tctx, sizeof(tctx)); // Prevent leaks
|
|
}
|
|
|
|
if (dklen % WHIRLPOOL_DIGESTSIZE)
|
|
{
|
|
l = 1 + dklen / WHIRLPOOL_DIGESTSIZE;
|
|
}
|
|
else
|
|
{
|
|
l = dklen / WHIRLPOOL_DIGESTSIZE;
|
|
}
|
|
|
|
r = dklen - (l - 1) * WHIRLPOOL_DIGESTSIZE;
|
|
|
|
/**** Precompute HMAC Inner Digest ****/
|
|
|
|
ctx = &(hmac.inner_digest_ctx);
|
|
WHIRLPOOL_init (ctx);
|
|
|
|
/* Pad the key for inner digest */
|
|
for (b = 0; b < pwd_len; ++b)
|
|
buf[b] = (char) (pwd[b] ^ 0x36);
|
|
memset (&buf[pwd_len], 0x36, WHIRLPOOL_BLOCKSIZE - pwd_len);
|
|
|
|
WHIRLPOOL_add ((unsigned char *) buf, WHIRLPOOL_BLOCKSIZE, ctx);
|
|
|
|
/**** Precompute HMAC Outer Digest ****/
|
|
|
|
ctx = &(hmac.outer_digest_ctx);
|
|
WHIRLPOOL_init (ctx);
|
|
|
|
for (b = 0; b < pwd_len; ++b)
|
|
buf[b] = (char) (pwd[b] ^ 0x5C);
|
|
memset (&buf[pwd_len], 0x5C, WHIRLPOOL_BLOCKSIZE - pwd_len);
|
|
|
|
WHIRLPOOL_add ((unsigned char *) buf, WHIRLPOOL_BLOCKSIZE, ctx);
|
|
|
|
/* first l - 1 blocks */
|
|
for (b = 1; b < l; b++)
|
|
{
|
|
derive_u_whirlpool (salt, salt_len, iterations, b, &hmac);
|
|
memcpy (dk, hmac.u, WHIRLPOOL_DIGESTSIZE);
|
|
dk += WHIRLPOOL_DIGESTSIZE;
|
|
}
|
|
|
|
/* last block */
|
|
derive_u_whirlpool (salt, salt_len, iterations, b, &hmac);
|
|
memcpy (dk, hmac.u, r);
|
|
|
|
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
|
|
if (NT_SUCCESS (saveStatus) && HasISSE())
|
|
KeRestoreFloatingPointState (&floatingPointState);
|
|
#endif
|
|
|
|
/* Prevent possible leaks. */
|
|
burn (&hmac, sizeof(hmac));
|
|
burn (key, sizeof(key));
|
|
}
|
|
|
|
|
|
typedef struct hmac_streebog_ctx_struct
|
|
{
|
|
STREEBOG_CTX ctx;
|
|
STREEBOG_CTX inner_digest_ctx; /*pre-computed inner digest context */
|
|
STREEBOG_CTX outer_digest_ctx; /*pre-computed outer digest context */
|
|
CRYPTOPP_ALIGN_DATA(16) char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the Streebog hash */
|
|
char u[STREEBOG_DIGESTSIZE];
|
|
} hmac_streebog_ctx;
|
|
|
|
void hmac_streebog_internal
|
|
(
|
|
char *d, /* input/output data. d pointer is guaranteed to be at least 64-bytes long */
|
|
int ld, /* length of input data in bytes */
|
|
hmac_streebog_ctx* hmac /* HMAC-Whirlpool context which holds temporary variables */
|
|
)
|
|
{
|
|
STREEBOG_CTX* ctx = &(hmac->ctx);
|
|
|
|
/**** Restore Precomputed Inner Digest Context ****/
|
|
|
|
memcpy (ctx, &(hmac->inner_digest_ctx), sizeof (STREEBOG_CTX));
|
|
|
|
STREEBOG_add (ctx, (unsigned char *) d, ld);
|
|
|
|
STREEBOG_finalize (ctx, (unsigned char *) d);
|
|
|
|
/**** Restore Precomputed Outer Digest Context ****/
|
|
|
|
memcpy (ctx, &(hmac->outer_digest_ctx), sizeof (STREEBOG_CTX));
|
|
|
|
STREEBOG_add (ctx, (unsigned char *) d, STREEBOG_DIGESTSIZE);
|
|
|
|
STREEBOG_finalize (ctx, (unsigned char *) d);
|
|
}
|
|
|
|
void hmac_streebog
|
|
(
|
|
char *k, /* secret key */
|
|
int lk, /* length of the key in bytes */
|
|
char *d, /* input data. d pointer is guaranteed to be at least 32-bytes long */
|
|
int ld /* length of data in bytes */
|
|
)
|
|
{
|
|
hmac_streebog_ctx hmac;
|
|
STREEBOG_CTX* ctx;
|
|
char* buf = hmac.k;
|
|
int b;
|
|
CRYPTOPP_ALIGN_DATA(16) char key[STREEBOG_DIGESTSIZE];
|
|
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
|
|
KFLOATING_SAVE floatingPointState;
|
|
NTSTATUS saveStatus = STATUS_SUCCESS;
|
|
if (HasSSE2() || HasSSE41())
|
|
saveStatus = KeSaveFloatingPointState (&floatingPointState);
|
|
#endif
|
|
/* If the key is longer than the hash algorithm block size,
|
|
let key = streebog(key), as per HMAC specifications. */
|
|
if (lk > STREEBOG_BLOCKSIZE)
|
|
{
|
|
STREEBOG_CTX tctx;
|
|
|
|
STREEBOG_init (&tctx);
|
|
STREEBOG_add (&tctx, (unsigned char *) k, lk);
|
|
STREEBOG_finalize (&tctx, (unsigned char *) key);
|
|
|
|
k = key;
|
|
lk = STREEBOG_DIGESTSIZE;
|
|
|
|
burn (&tctx, sizeof(tctx)); // Prevent leaks
|
|
}
|
|
|
|
/**** Precompute HMAC Inner Digest ****/
|
|
|
|
ctx = &(hmac.inner_digest_ctx);
|
|
STREEBOG_init (ctx);
|
|
|
|
/* Pad the key for inner digest */
|
|
for (b = 0; b < lk; ++b)
|
|
buf[b] = (char) (k[b] ^ 0x36);
|
|
memset (&buf[lk], 0x36, STREEBOG_BLOCKSIZE - lk);
|
|
|
|
STREEBOG_add (ctx, (unsigned char *) buf, STREEBOG_BLOCKSIZE);
|
|
|
|
/**** Precompute HMAC Outer Digest ****/
|
|
|
|
ctx = &(hmac.outer_digest_ctx);
|
|
STREEBOG_init (ctx);
|
|
|
|
for (b = 0; b < lk; ++b)
|
|
buf[b] = (char) (k[b] ^ 0x5C);
|
|
memset (&buf[lk], 0x5C, STREEBOG_BLOCKSIZE - lk);
|
|
|
|
STREEBOG_add (ctx, (unsigned char *) buf, STREEBOG_BLOCKSIZE);
|
|
|
|
hmac_streebog_internal(d, ld, &hmac);
|
|
|
|
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
|
|
if (NT_SUCCESS (saveStatus) && (HasSSE2() || HasSSE41()))
|
|
KeRestoreFloatingPointState (&floatingPointState);
|
|
#endif
|
|
/* Prevent leaks */
|
|
burn(&hmac, sizeof(hmac));
|
|
}
|
|
|
|
static void derive_u_streebog (char *salt, int salt_len, uint32 iterations, int b, hmac_streebog_ctx* hmac)
|
|
{
|
|
char* u = hmac->u;
|
|
char* k = hmac->k;
|
|
uint32 c, i;
|
|
|
|
/* iteration 1 */
|
|
memcpy (k, salt, salt_len); /* salt */
|
|
/* big-endian block number */
|
|
b = bswap_32 (b);
|
|
memcpy (&k[salt_len], &b, 4);
|
|
|
|
hmac_streebog_internal (k, salt_len + 4, hmac);
|
|
memcpy (u, k, STREEBOG_DIGESTSIZE);
|
|
|
|
/* remaining iterations */
|
|
for (c = 1; c < iterations; c++)
|
|
{
|
|
hmac_streebog_internal (k, STREEBOG_DIGESTSIZE, hmac);
|
|
for (i = 0; i < STREEBOG_DIGESTSIZE; i++)
|
|
{
|
|
u[i] ^= k[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
void derive_key_streebog (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
|
|
{
|
|
hmac_streebog_ctx hmac;
|
|
STREEBOG_CTX* ctx;
|
|
char* buf = hmac.k;
|
|
char key[STREEBOG_DIGESTSIZE];
|
|
int b, l, r;
|
|
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
|
|
KFLOATING_SAVE floatingPointState;
|
|
NTSTATUS saveStatus = STATUS_SUCCESS;
|
|
if (HasSSE2() || HasSSE41())
|
|
saveStatus = KeSaveFloatingPointState (&floatingPointState);
|
|
#endif
|
|
/* If the password is longer than the hash algorithm block size,
|
|
let pwd = streebog(pwd), as per HMAC specifications. */
|
|
if (pwd_len > STREEBOG_BLOCKSIZE)
|
|
{
|
|
STREEBOG_CTX tctx;
|
|
|
|
STREEBOG_init (&tctx);
|
|
STREEBOG_add (&tctx, (unsigned char *) pwd, pwd_len);
|
|
STREEBOG_finalize (&tctx, (unsigned char *) key);
|
|
|
|
pwd = key;
|
|
pwd_len = STREEBOG_DIGESTSIZE;
|
|
|
|
burn (&tctx, sizeof(tctx)); // Prevent leaks
|
|
}
|
|
|
|
if (dklen % STREEBOG_DIGESTSIZE)
|
|
{
|
|
l = 1 + dklen / STREEBOG_DIGESTSIZE;
|
|
}
|
|
else
|
|
{
|
|
l = dklen / STREEBOG_DIGESTSIZE;
|
|
}
|
|
|
|
r = dklen - (l - 1) * STREEBOG_DIGESTSIZE;
|
|
|
|
/**** Precompute HMAC Inner Digest ****/
|
|
|
|
ctx = &(hmac.inner_digest_ctx);
|
|
STREEBOG_init (ctx);
|
|
|
|
/* Pad the key for inner digest */
|
|
for (b = 0; b < pwd_len; ++b)
|
|
buf[b] = (char) (pwd[b] ^ 0x36);
|
|
memset (&buf[pwd_len], 0x36, STREEBOG_BLOCKSIZE - pwd_len);
|
|
|
|
STREEBOG_add (ctx, (unsigned char *) buf, STREEBOG_BLOCKSIZE);
|
|
|
|
/**** Precompute HMAC Outer Digest ****/
|
|
|
|
ctx = &(hmac.outer_digest_ctx);
|
|
STREEBOG_init (ctx);
|
|
|
|
for (b = 0; b < pwd_len; ++b)
|
|
buf[b] = (char) (pwd[b] ^ 0x5C);
|
|
memset (&buf[pwd_len], 0x5C, STREEBOG_BLOCKSIZE - pwd_len);
|
|
|
|
STREEBOG_add (ctx, (unsigned char *) buf, STREEBOG_BLOCKSIZE);
|
|
|
|
/* first l - 1 blocks */
|
|
for (b = 1; b < l; b++)
|
|
{
|
|
derive_u_streebog (salt, salt_len, iterations, b, &hmac);
|
|
memcpy (dk, hmac.u, STREEBOG_DIGESTSIZE);
|
|
dk += STREEBOG_DIGESTSIZE;
|
|
}
|
|
|
|
/* last block */
|
|
derive_u_streebog (salt, salt_len, iterations, b, &hmac);
|
|
memcpy (dk, hmac.u, r);
|
|
|
|
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
|
|
if (NT_SUCCESS (saveStatus) && (HasSSE2() || HasSSE41()))
|
|
KeRestoreFloatingPointState (&floatingPointState);
|
|
#endif
|
|
|
|
/* Prevent possible leaks. */
|
|
burn (&hmac, sizeof(hmac));
|
|
burn (key, sizeof(key));
|
|
}
|
|
|
|
wchar_t *get_pkcs5_prf_name (int pkcs5_prf_id)
|
|
{
|
|
switch (pkcs5_prf_id)
|
|
{
|
|
case SHA512:
|
|
return L"HMAC-SHA-512";
|
|
|
|
case SHA256:
|
|
return L"HMAC-SHA-256";
|
|
|
|
case RIPEMD160:
|
|
return L"HMAC-RIPEMD-160";
|
|
|
|
case WHIRLPOOL:
|
|
return L"HMAC-Whirlpool";
|
|
|
|
case STREEBOG:
|
|
return L"HMAC-STREEBOG";
|
|
|
|
default:
|
|
return L"(Unknown)";
|
|
}
|
|
}
|
|
|
|
|
|
|
|
int get_pkcs5_iteration_count (int pkcs5_prf_id, int pim, BOOL truecryptMode, BOOL bBoot)
|
|
{
|
|
if ( (pim < 0)
|
|
|| (truecryptMode && pim > 0) /* No PIM for TrueCrypt mode */
|
|
)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
switch (pkcs5_prf_id)
|
|
{
|
|
|
|
case RIPEMD160:
|
|
if (truecryptMode)
|
|
return bBoot ? 1000 : 2000;
|
|
else if (pim == 0)
|
|
return bBoot? 327661 : 655331;
|
|
else
|
|
{
|
|
return bBoot? pim * 2048 : 15000 + pim * 1000;
|
|
}
|
|
|
|
case SHA512:
|
|
return truecryptMode? 1000 : ((pim == 0)? 500000 : 15000 + pim * 1000);
|
|
|
|
case WHIRLPOOL:
|
|
return truecryptMode? 1000 : ((pim == 0)? 500000 : 15000 + pim * 1000);
|
|
|
|
case SHA256:
|
|
if (truecryptMode)
|
|
return 0; // SHA-256 not supported by TrueCrypt
|
|
else if (pim == 0)
|
|
return bBoot? 200000 : 500000;
|
|
else
|
|
{
|
|
return bBoot? pim * 2048 : 15000 + pim * 1000;
|
|
}
|
|
|
|
case STREEBOG:
|
|
if (truecryptMode)
|
|
return 1000;
|
|
else if (pim == 0)
|
|
return bBoot? 200000 : 500000;
|
|
else
|
|
{
|
|
return bBoot? pim * 2048 : 15000 + pim * 1000;
|
|
}
|
|
|
|
default:
|
|
TC_THROW_FATAL_EXCEPTION; // Unknown/wrong ID
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif //!TC_WINDOWS_BOOT
|